

TDS 水质检测产品开发平台使用手册

版本: V1.60 日期: 2024-12-11

www.holtek.com

目录

一、开发环境	3
1.1 整体环境	3
1.2 软件	3
1.3 硬件	3
二、TDS Workshop 主界面	6
三、新建工程	8
3.1 新建工程	8
3.2 工程配置界面	9
3.3 开启工程	15
四、校准监测	18
4.1 校准监测窗口	18
五、平台实例	25
5.1 导出平台实例	25
六、库函数说明	26
6.1 TDS 宏定义与库函数	26
6.2 通信说明	29
七、附录	38
7.1 实物图	38
7.2 开发板原理图	38
7.3 测试	42

一、开发环境

TDS Workshop 是 Holtek 推出的 TDS 应用开发平台,平台将 TDS 测量、温度测量、按键、显示、通信等功能整合,用户可快速配置功能,生成目标代码;并且提供校准监测窗口,方便用户校准和实时监测数据;图像化操作界面,方便用户进行开发,缩短开发周期;可用于 TDS 笔、净水器等 TDS 应用开发。

1.1 整体环境

1.2 软件

TDS 应用开发软件包括 TDS Workshop 和 HT-IDE3000。

1.2.1 TDS Workshop

TDS Workshop 用于主控 MCU 的选择, MCU 资源的配置, TDS 及 NTC 功能配置, 代码生成和 TDS 数据的校准和实时监测等功能。

1.2.2 HT-IDE3000

HT-IDE3000 用于编辑和查看源程序,通过 e-Link 将程序下载到开发板中。

1.3 硬件

TDS 应用开发硬件包括: TDS Workshop 配套评估板,用户也可根据实际应用 开发所需的开发板; e-Link 用于仿真和下载程序。

1.3.1 TDS Workshop 配套评估板

TDS Workshop 配套评估板由显示板和 TDS 模块组成,实物图详见附录。

通用显示板: TDS Display Board

显示板上包含 USB 接口(可用于供电、与平台通信), USB to UART 和 USB to IIC Bridge IC 电路(可用于与平台通信), 3个 KEY, LCD(默认: 3COM×9SEG) 显示, 2个 LED 警报指示灯,模块接口(可接 TDS Module 进行测试),烧录接口和供电接口。

显示板连接说明:

显示板上3个按键KEY、LCD、2个警报指示灯都可以进行功能测试;如果直接通过短路帽连接相应的功能,则平台MCU配置时必须采用默认的I/O引脚配置;若有修改相应功能的I/O引脚配置且还需要进行功能测试时,可通过杜邦线进行连接测试。

显示板 UART 通信功能硬件连接说明:

- •通过短路帽将 J6 连接到 5V 或 3.3V (选择 MCU 工作电压);
- 将 J5、J7 上的通信引脚和 VDD 通过短路帽连接 (接通 USB、HT42B534-2 的 UART 通信脚和 VDD 到 MCU 上);
- •选择 UART 通信时, IIC 通信的 J8、J9、J10 接口上的短路帽必须全部去掉, 防止电路相互影响。
- UART 连接示意如下图所示:

IIC(J8/J9/J10)

Connect to TDS Module

IIC 通信功能硬件连接说明:

- •通过短路帽将 J8 连接到 5V 或 3.3V (选择 MCU 工作电压);
- 将 J9、J10 上的通信脚和 VDD 通过短路帽连接 (接通 USB、HT42B532-1 的 IIC 通信脚和 VDD 到 MCU 上)
- ●选择IIC通信方式时,UART通信的J5、J6、J7接口上的短路帽必须全部去掉, 防止电路相互影响。
- IIC 通信的连接方式参考 UART 通信连接;

TDS 模块: TDS Module

- TDS Module (HT66F0185/HT66F3185/HT66F3195):选择主控 MCU 为 HT66F0185、HT66F3185 或者 HT66F3195 时使用,模块支持单/双路 TDS 和 NTC 应用,单路 TDS 应用时支持 LCD 和 KEY 功能,可配合显示板上的 LCD 和 KEY 进行功能验证,通信方式可选择 UART 或 IIC。
 - 注: TDS Module (HT66F0185/HT66F3185/HT66F3195)选用双通道时,且搭 配显示板使用时,注意显示板的 KEY、LCD、LED 功能接口 (J3、J4) 上的短路帽必须断开,防止电路相互影响导致功能异常。
- ② TDS Module (HT66F0176/HT66F2030):选择主控 MCU 为 HT66F0176 或者 HT66F2030 时使用,模块支持单路 TDS 和 NTC 应用,不支持显示板上的 LCD、LED 和 KEY 功能,通信方式可选择 UART 或 IIC。
- ③ TDS Module (HT66F019): 选择主控 MCU 为 HT66F019 时使用,此模块支持单/双路 TDS 和 NTC 应用,不支持显示板上的 LCD、LED 和 KEY 功能,通信方式可选择 UART 或 IIC。

在 TDS 模块背面的拨码开关是用于将 TDS CH1/CH2 和 NTC CH1/CH2 连接到 对应的 MCU 引脚上,当模块没有配置对应的 TDS CH2 或 NTC CH1/CH2 时, 对应的拨码开关必须关闭,否则未使用通道对应的采集电路可能会与其他应用 电路冲突,导致功能异常。

1.3.2 硬件连接示意图

1.3.3 e-Link 连接方式

e-Link 引脚说明:

硬件连接示意图:

将评估板上的 ICP 接口连接到 e-Link 对应的引脚上,再把 e-Link 通过 USB 连接到 PC,就可以进行仿真和下载程序。

二、TDS Workshop 主界面

双击 💽 TOS Workshop 桌面图标,即可打开 TDS Workshop 软件, TDS Workshop 主界面 有菜单栏、新建工程、平台实例、校准监测等基本操作项和最近开启工程列表, 如下图所示:

□ TDS水质检测产品开发平	
工程 语言 工具	说明
■ TDS: K.版 位 滅) 「 由 デス 工程 语言 工具 新建工程 「 校准 监 测 →→→↓ ↓ ・ ・ 平台实例	中 说明 最近开启工程 TDS_HT66F0185_TEST01_EATDSProjectTDS_HT66F0185_TEST01.phds

- •新建工程:新建HT-IDE3000工程,同时生成对应的工程目录文件。
- 平台实例:打开平台已有的 TDS 产品应用范例。
- 校准监测:打开校准监测窗口,用于辅助 TDS 产品校准和监测数据。
- •最近开启工程:直接在列表中打开最近开启的 TDS Workshop 工程,最多保留 20 个旧档案的开启路径。
- 菜单栏:菜单栏有工程、语言、工具、说明等功能选项。

a. 工程:用于新建、开启、存储工程、导出电路原理图图片。

b. 语言:可切换 TDS Workshop 语言为英文、简体中文或繁体中文。

TDS水质检测产品开发平台						
工程	语言	工具	说明			
	English 简体中文 繁體中文					

c. 工具: 可打开校准监测窗口。

TDS水质检测产品开发平台						
工程 语言 工具 说明						
		校准监测窗				

d. 说明:可查看 TDS Workshop 使用说明、平台版本信息和版本更新等。

TDS水质检测产品开发平台							
工程	语言	工具	说明				
			使用说明				
	检测更新						
			关于平台				

三、新建工程

用户可以通过新建一个工程,自行选择 MCU 型号和配置 TDS 功能,下面将介绍新建工程的具体步骤。

3.1 新建工程

用户可通过两种方法新建工程:

a. 直接在主界面点击"新建工程"图标,如下图:

b. 通过主界面的菜单栏:工程→新建工程,如下图:

🔄 TDS水质检测产品	品开发平	7台	$ - \times $
工程 语言	工具	说明	
新建工程 开启旧档 存储工程			
另存新档导出电路原理图图片		最近开启工程	
		Untitled1 C:\Users\xyf\Documents\TDS_Project\Untitled1\Untitled1.pjtds	_
+		Untitled C:\Users\xyf\Documents\TDS_Project\Untitled\Untitled.pjtds	_
新建工程			
校准监测			
平台实例			

点击新建工程后,跳出新建工程窗口,编辑工程名称、选择工程生成文件存储路径和选择 MCU 型号及封装,点击"OK"进入工程配置界面。

新建工程	×
工程名称:	
TDS_HT66F0185_TEST01	
工程路径:	
C: \Users\xyf\Documents\TDS_Project	
MCU:	
HT66F0185 ~	
封装 :	
28 SOP-A/SSOP-A V	
OK Can	cel

3.2 工程配置界面

TDS 工程配置主要有 4 个操作步骤: TDS 配置、NTC 配置、MCU 配置、完成。 下面将对各个操作步骤做具体说明。

TDS 配置:可选择 MCU 型号及封装(会持续更新适用的 MCU 型号),配置 TDS 通道数、探针类型和校准模式。探针型号有三种:TDS-37、TDS-57、TDS-67 (会持续更新新的探针型号),描述部分为选择的探针型号规格说明,可点击右边的 文档 按钮直接打开规格文件;校准模式目前只支持单点校准。配置完成后点击"下一步"进入下一项配置。

🛅 TDS水质检测产	[™] 品开发平台 E∖TDSP	roject\TDS_HT66F0185_TEST01\TDS_HT66F0185_TEST01.pjtds
工程 语言	工具 说明	
MCU 选型 通道1配置	起始 TDS ≝: HT66F0185 ・	配置 NTC配置 MCU配置 完成 封装: 28 SOP-A/SSOP-A ▼ TDS 通道: 单通道 ▼
探针选型:	TDS-57 👻	描述 文档
校准模式:	单点校准 🔻	57±1 20±0.3_25±0.5
探针样式:	W	
通道2配置		r T
探针选型:	Ţ	描述文档
校准模式:	-	
探针样式:		
		返回 下一步

NTC 配置:选择 NTC 通道数、NTC 电路类型、NTC 型号和分压电阻值。NTC 通道数最多可选择双通道,但是不能大于 TDS 通道数;NTC 电路类型有两种 控制模式,一种通过 I/O 接到 MCU 的 VDD,一种接到 MCU 的 GND;当 TDS 探针选择 TDS-37 时,NTC 型号固定为 3435 10K;当 TDS 探针选择 TDS-57/ TDS-67 时,NTC 型号可选择:3950 5K/10K/20K/50K/100K、自建 R-T 表,其 中自建 R-T 表需要用户自行填写 NTC 温度对应阻值,选择 NTC 后对应的 NTC 参数会在右边列出;配置完成后点击"下一步"进入下一项配置。

平台两种类型的 NTC 电路可支持产品低功耗需求,例如电池供电,需要控制 NTC 电路的供电,当不采样时停止供电以降低功耗,但因 I/O 本身有内阻存在, 例如:选择 NTC 电路类型二,HT66F3185 I/O 接 VDD (5V)驱动使用的是源电流, 平台已设置最大源电流档位,可根据下表中的内阻计算公式得出其 I/O 會有最 大不超過 62.5Ω 的内阻,故由于不确定的 R_{IO},在测量温度较高的情况下,NTC 的阻值会越小,其温度误差也会越大;选择 NTC 电路类型一同样需要考虑 I/ O 内阻带来的影响;若用户无功耗上的需求,可使用 NTC 电路上端接 VDD, 下端接 GND 的方式来完全消除 I/O 内阻的影响,平台选不同 MCU 的 I/O 内阻计算可参考下表:

Ht Lt MOLL		山四山質八上				
候 y WCO	VDD	条件	最小	典型	最大	内国计并公式
	5V		8mA	16mA	-	
H100F3195	3V		4mA	8mA	-	
	5V		8mA	16mA	-	
H100F3185	3V	$V_{OH} = 0.9 V_{DD}$	4mA	8mA	-	
HTEEF2020	5V		8mA	16mA	-	
	3V		4mA	8mA	-	$R_{IO} = \frac{0.1 V_{DD}}{I_{OH}}$
	5V		11mA	22mA	-	
H100F0105	3V		5.5mA	11mA	-	
HT66F0176	5V		11mA	22mA	-	
	3V		5.5mA	11mA	-	
	5V		32mA	64mA	-	
H100FU19	3V		16mA	32mA	-	

	₩+±MCU					
候 块 WCO	VDD	条件	最小	典型	最大	内阻引并公式
	5V		32mA	65mA	-	
H100F3195	3V		16mA	32mA	-	
	5V		32mA	65mA	-	
H100F3185	3V	$V_{OL} = 0.1 V_{DD}$	16mA	32mA	-	
	5V		32mA	65mA	-	
	3V		16mA	32mA	-	$R_{\rm IO} = \frac{0.1 V_{\rm DD}}{l_{\rm OL}}$
	5V		32mA	64mA	-	
H100F0185	3V		16mA	32mA	-	
HT66F0176	5V		32mA	64mA	-	
	3V		16mA	32mA	-	
	5V		32mA	64mA	-	
F100F019	3V		16mA	32mA	-	

NTC 配置 - 自建 R-T 表: NTC 型号中可选择自建 R-T 表以满足用户更多的 NTC 型号选择,点击自建 R-T 表后将弹出 R-T 表填写窗口,用户需要填写温度 范围以及该温度范围内对应的温度阻值,在填写 R-T 表需注意温度越高阻值越 小,并且温度范围需要涵盖 25℃,最大温度温度范围为 0℃~99℃。

MCU 配置:进行 TDS、NTC、通信方式、按键、报警灯、LCD 等相应功能及 其引脚配置。通信方式支持 UART 或者 IIC 通信,UART 通信方式还可选择使 用 Modbus 通信格式进行通信。进行 I/O 引脚配置可将对应的功能引脚直接拖动 到右边的 MCU 示意图引脚上,I/O 引脚配置若发生更改则对应的引脚示意会由 蓝色变成红色框线,I/O 引脚为绿色框线表示该引脚功能不可更改。点击 MCU 示意图右上方 S 图示可撤销上一引脚操作,点击 ☑ 图示恢复上一撤销操作。 点击"完成",即完成 TDS 工程新建。

☑ TDS水质检测产品开发	发平台 C:\User	rs\xyf\Docum	ents\TDS_Project	Untitled\Untitle	ed.pjtds	- ×
工程 语言 工具	. 说明					
	起始 TE	DS配置	NTC配置	MCU配置	完成	
Fsys: HIRC-8MHz TDS5I脚配置: (TDS1+)(TDS1-)(TDS1/	Fsub : LIRC-32KI	Hz	1/0 引服	記置:		
NIC5 酸配置: (NTC1_VØ)(NTC1 A/D) 通信接口: 図 UART TX RX □ IIC SCL SDA 按键配置: 図 ON/OFF 図 H 显示接口: LCD 报警灯: 2 LED1 LED2 COM 3 ~ (COM0) COM1 (COM SEG: 9 ~ (SEG0 SEG1 SEG3 (SEG5 SEG6 SEG7)) □使用Modbusi通 old ☑ Mod	信协议 e	519/OSC1 520/OSC2 0/SCOM0 VOCSDA O/SSEG21 1/SCOM1 S/SSEG23 1/SCOM1 S/SSEG23 1/SCOM2 0/OCDSCK 1/SCOM4 1/SSCOM4 1/SSCOM4 1/SSCOM5 1/SSSCOM5	VSS 1 iEG4 2 iEG6 3 OM1 4 .ED1 5 .Acae 6 PC4 7 PC5 8 Hold 9 N/OFF 10 .ED2 11 .CM0 12 .OM0 12 .CM1 13 .EEG0 14	HT66F0185 28 SOP-A/SSOP-A	20 VDD 27 NTC1_VO INT0/SSEG 26 NTC1 A/D INT1/SSEG 27 SEG1 TCK0/SSEG 28 SEG1 TCK0/SSEG 24 SEG2 SSEG14 25 TX TV/SSEG11 26 SEG3 SSEG11 27 TX TV/SSEG11 29 SEG3 SSEG11 29 TDS1-VD TCK2/SSEG 20 SEG3 SSEG10/AI 20 TDS1+VD TCK2/SSEG 21 SEG8 [RX]/CLO/H
提示:直接拖动对应的功能按	钮或I/O引脚进行功能	記置			上一步	完成

导出电路原理图图片: 在 MCU 配置界面可点击菜单栏中项目的电路原理图来预览对应配置的原理图,用户在电路原理图界面可以点击"文件"来保存或者打印原理图

完成:工程配置完成后可选择"打开工程目录"或"启动 HT-IDE3000"直接打 开程序进行编辑和下载,点击"起始"可回到初始界面,点击"上一步"可重 新进行配置。

生成的工程目录包含的文件如下:HT-TDSProjectCode 文件夹为HT-IDE3000项目文件;HT-TDSProjectDoc文件夹中为选择的MCU对应硬件说明、TDS模块通信协议;生成的.pjtds档为TDSWorkshop工程。

3.3 开启工程

有两种打开工程的方法:

a. 通过主界面"最近开启工程"列表,直接选择要开启的工程(TDS Workshop 工程文件后缀名为".pjtds")。

□ TDS水质检测产品开	发平台	$ - \times $
工程 语言 工具	見 说明	
	₹ 00495 最近开启工程 TDS_HT66F0185_TEST01 EXTDSProject/TDS_HT66F0185_TEST01/TDS_HT66F0185	_TEST01.pjtds
新建工程		
1/1/2-1/12		
校 准监测		
➡→→↓ →→√ 平台实例		

b. 通过主界面的菜单栏: "工程"→"开启旧档",选择开启对应路径下的工程文件。

打开对应的工程后即可进入工程配置界面(配置界面与新建工程一致),可重新 配置工程或不更改配置选项直接点击"下一步",直到完成HT-IDE3000工程 生成。

新的工程文件会覆盖之前的工程,可在配置界面下通过菜单栏选择"工程"→"另存新档"生成新的工程目录避免覆盖之前的工程。

四、校准监测

校准监测窗口可与开发板进行通信,实现 TDS、NTC 校准和实时监测 TDS 值 并导出测试数据的功能。

4.1 校准监测窗口

用户可直接单击TDS Workshop 主界面的"校准监测"图标,或者从菜单栏的"工 具"→"校准监测窗口"开启校准监测窗口,会跳出"校准监测"操作界面。

🔲 TDS	水质检测产	^立 品开发 ³	平台				$- \times$
工程	语言	工具	说明				
		校准监测部	5				
	_		最近开启	工程			
	+		TDS_HT66F0	185_TEST01	E:\TDSProject\TDS_HT66F0185_T	EST01\TDS_HT66F0185_T	EST01.pjtds
	新建工程	1					
	校准监测	IJ					
	$ \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow} \xrightarrow{\leftarrow}$						
	平台实例	ſ					

4.1.1 校准监测语言选择

校准监测窗口上方的菜单栏"语言"选项可以选择窗口显示的语言为英文、简体中文或者繁体中文。

■ 校准监测			$ - \times $
语言 说明			
端口号: COM1 ∨ 打开串口	通信方式: UART ∨ □使用Modbus通	信	
NTC温度校准	TDS校准	提示信息 Clear	

4.1.2 读取开发板信息

开启校准监测窗口后,若选择通信方式为UART,平台软件支持通过第三方的USB转串口设备与模块通信,用户需要在端口号下拉框中选择对应的通信设备串口号,勾选"使用 Modbus 通信"后软件将会按照 Modbus 的格式进行通信;若选择通信方式为 IIC,则平台软件仅支持与 HT42B532-1 通信 IC 连接的模块。

点击 (打开#ID) 按钮打开串口,在端口号选择正确的情况下,平台会读取开发板 信息,并在提示信息中显示读取的信息: TDS 通道数及校准信息,探针型号, NTC 通道数及校准信息。

4.1.3 NTC 温度校准

进行 NTC 校准需先勾选要校准的 NTC 通道,再将测试溶液的标准温度填入"仪器采集温度"栏里(默认值为25.0℃,温度精确到小数点后一位),点击"Start", 开发板开始校准 NTC,校准完成后,提示信息会提示 NTC 已校准并显示校准 温度点,若校准失败则提示 NTC 校准失败,用户可检查 NTC 是否正常接入。

🗖 校准监测			$ - \times $
语言 说明			
端口号: COM6 ~ 打开串口	通信方式: UART ∨ □使用Modbus通信		
NTC温度校准	TDS校准	提示信息 Clear	
☑ CH1 □ CH2	TDS校准模式: 单点校准 ~	NTC 已校准 校准温度点: 25.0 ℃	^
仪器采集温度: 25.0 ℃	TDS校准通道: ☑ CH1 □ CH2 校准占· 第一占 ✓		
	校准波度: 500.0 us/cm		
	(校准溶液选用KCL或NaCL溶液)		
Start	Start		~

校准 NTC 后的校准信息存放在 EEPROM 中,对应的存储地址如下表:

NTC CH1 校准信息的 EEPROM 存储地址:						
EEPROM 地址	存储内容	说明				
0x07	F_CAL_NTC1	0: NTC 未校准; 1: 己校准				
0x08	S_CAL_NTC1(高8位)	标准溶液温度(高8位)				
0x09	S_CAL_NTC1(低8位)	标准溶液温度(低8位)				
0x0A	CAL_NTC1(高8位)	测得的溶液温度(高8位)				
0x0B	CAL_NTC1(低8位)	测得的溶液温度(低8位)				

NTC CH2 校准信息的 EEPROM 存储地址:						
EEPROM 地址	存储内容	说明				
0x17	F_CAL_NTC2	0: NTC 未校准; 1: 已校准				
0x18	S_CAL_NTC2(高8位)	标准溶液温度(高8位)				
0x19	S_CAL_NTC2(低8位)	标准溶液温度(低8位)				
0x1A	CAL_NTC2(高8位)	测得的溶液温度(高8位)				
0x1B	CAL_NTC2(低8位)	测得的溶液温度(低8位)				

4.1.4 TDS 校准

进行 TDS 校准需先勾选要校准的 TDS 通道,再将校准的标准溶液浓度填入"校 准浓度"栏中(默认值为 500.0 us/cm,浓度精确到小数点后一位), TDS 校准 模式目前只支持单点校准,点击"Start",开发板开始校准TDS,校准完成后, 提示信息会提示 TDS 已校准并显示校准的浓度和校准时的溶液温度。

💿 校准监测			$ - \times$
语言 说明			
端口号: COM6 🗸 打开串口	通信方式: UART 🛛 🗸 🗌 使用Modbus通信		
NTC温度校准	TDS校准	提示信息 Clear	
☑ CH1 □ CH2	TDS校准模式: 单点校准 ~	TDS 已校准	^
仪器采集温度: 25.0 ℃	TDS校准通道: CH1 CH2	校准模式:单点校准 校准点: 第1点	
	校准点: 第一点 ~	校准浓度: 500.0 us/cm 校准TDS时的溶液温度: 25.0 ℃	
	校准浓度: 500.0 us/cm		
	(校准溶液选用KCL或NaCL溶液)		
Start	Start		~

校准 TDS 后的校准信息存放在 EEPROM 中,对应的存储地址如下表:

TDS CH1 校准信息的 EEPROM 存储地址:						
EEPROM 地址	存储内容	说明				
0x00	F_CAL_TDS1	0: TDS 未校准; 1: 已校准				
0x01	S_CAL_TDS1(高8位)	标准溶液浓度(高8位)				
0x02	S_CAL_TDS1(低8位)	标准溶液浓度(低8位)				
0x03	CAL_TDS1(高8位)	测得的溶液浓度(高8位)				
0x04	CAL_TDS1(低8位)	测得的溶液浓度(低8位)				
0x05	CAL_TEMP1(高8位)	校准 TDS 时的溶液温度(高8位)				
0x06	CAL_TEMP1(低8位)	校准 TDS 时的溶液温度(低8位)				

TDS CH2 校准信息的	EEPROM 存储地址:	
EEPROM 地址	存储内容	说明
0x10	F_CAL_TDS2	0: TDS 未校准; 1: 已核
0x11	S_CAL_TDS2(高8位)	标准溶液浓度(高8位)

0x12	S_CAL_TDS2(低8位)	标准溶液浓度(低8位)
0x13	CAL_TDS2(高8位)	测得的溶液浓度(高8位)
0x14	CAL_TDS2(低8位)	测得的溶液浓度(低8位)
0x15	CAL_TEMP2(高8位)	校准 TDS 时的溶液温度(高8位)
0x16	CAL TEMP2(低8位)	校准 TDS 时的溶液温度(低 8 位)

说明 1: 已校准

校准 TDS 值可选用 KCL 或 NaCL 溶液进行校准,还可依据 TDS 量测范围选择 合适的标准溶液浓度进行校准;例如:0~1000PPM 的量测范围,可选择大约 400~600PPM 的标准溶液进行 TDS 校准。

4.1.5 TDS 数据监测

"CH1数据"和"CH2数据"分别为TDS通道1和通道2的数据监测窗口, 若为双通道TDS可以同时对双通道进行监测,点击对应通道数据监测窗口下 方的"Start"按钮开启该通道TDS数据监测。若对应的"Start"按钮为灰色, 表示该通道不能进行TDS数据监测。

当平台开始监测 TDS 数据提示信息会提示"通道1(或通道2)开始监控"。在 对应通道的监测窗口有一曲线图显示平台读取到的电导率值和温度值,最多可 显示 120 个数值,之后再读取数据横坐标会不断后移。曲线图中的绿色曲线为 电导率值对应左边的绿色坐标,红色曲线为温度值对应右边的红色坐标。用户 可以按住鼠标左键向右下方拖动,框选出要放大的区域,以查看数据,按住鼠 标向左上方拖动则返回初始大小的图表窗口。曲线图上方显示的电导率和温度 为最新读取到的值。

	А	В	С	D
1	时间(s)	温度(°C)	电导率(us/	'cm)
2	0	24.4	489.5	
3	1	24.4	489.5	
4	2	24.4	489.5	
5	3	24.4	489.5	
6	4	24.4	489.5	
7	5	24.4	489.5	
8	6	24.4	489.5	
9	7	24.4	489.5	
10	8	24.4	489.5	
11	9	24.4	489.5	
12	10	24.4	489.5	

导出的 EXCEL 表格包含的测试数据有时间、温度和电导率,如下所示:

五、平台实例

平台实例是 Holtek 提供的 TDS 产品应用实例,用户可根据实际开发需求直接导出应用实例工程。

平台实例测量范围:

- 温度测量范围: 0~99°C;
- •TDS 测量范围: 0~2000PPM;
- TDS 测量精度: ±5%;

5.1 导出平台实例

单击 TDS Workshop 主界面的"平台实例"图标,即可打开平台实例窗口。

<u>工程</u> 语言 新建工		送明 最近开启工 Untitled C:\Users\v Example C:\Users\v Tesgg 示例名称	程 (yADocumer xyADocume	nts\TDS_Pro 2nts\TDS_Pr	sjeet/Untitled/Untitled.pjtds njeet/Untitled1/Frample pjtds	X
新建工		最近开启工 Untitled C:\Users\v Example C:\Users\v T Tess® 示例名称	程 cyADocumer xyADocume	nts\TDS_Pro	ojectUntitledUntitled.pjtds njectUntitledUFrample pjtds	X
新建工	C程	Example C·\Lisers\ ■ 平台实例 示例名称	xyADocume	ents\TDS_Pn	ojectUntitled1\Example.pjtds	×
新建工	□程	■ _{平台实例} 示例名称			-	- - ×
تربع بربانی بربانی	_程	示例名称				
	-		工作电压。	系统频率	MCU 型号	TDS 配置
		TDS水质检测笔	3.3V	8Mhz	HT66F3185(28SOP-A/ SSOP-A)	单通道,TDS
-		TDS水质检测笔	3.3V	8Mhz	HT66F0185(28SOP-A/ SSOP-A)	单通道,TD5
	🔒 📗	单路TDS水质检测模块	5V	8Mhz	HT66F0176(24SOP-A/ SSOP-A)	单通道,TD5
	¥	双路TDS水质检测模块	5V	8Mhz	HT66F019(20NSOP-A)	双通道,TDS
校准监						
$ \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet}$	ţ.					
平台实	~例	<				>

平台实例列表列出了各个实例的工作电压、系统频率、MCU型号、TDS、NTC 配置等具体参数规格。单击对应实例跳出"导出示例"窗口,编辑工程名称、 选择工程生成文件存储路径,点击"OK"进入工程配置界面(配置界面与新建 工程一致),可根据实际应用重新配置工程或不更改配置选项直接点击"下一步",直到完成HT-IDE3000工程生成。

■ 平台实例						\times
示例名称	工作电压	系统频率	MCU 型号		TDS	S 配置
TDS水质检测笔	3.3V	8Mhz	HT66F3185(28SOP-A/	SSOP-A)	单通道	۰ TD
TDS水质检测笔	3.3V	8Mhz	HT66F0185(28SOP-A/	SSOP-A)	单通道	• TD:
单路TDS水质检测模 ^{导出}	示例			× P-A)	单通道	, TDS
双路TDS水质检测模	工程名称:				双通道	• TD
	Untitled					
	工程路径:					
	C: Users xyf	Documents\TDS_	Project]		
			OK Cancel			
<						>

六、库函数说明

目前平台提供的 TDS 库及其对应的 MCU 如下表所示,在平台选择不同的应用 会自动生成对应的库。

MCU	TDS 库	说明
UT44E0195	HT66F0185_S_TDS.lib	HT66F0185 单通道 TDS 库
H100F0185	HT66F0185_D_TDS.lib	HT66F0185 双通道 TDS 库
HT66F0176	HT66F0176_S_TDS.lib	HT66F0176 单通道 TDS 库
	HT66F019_S_TDS.lib	HT66F019 单通道 TDS 库
H166F019	HT66F019_D_TDS.lib	HT66F019 双通道 TDS 库
UT44E2195	HT66F3185_S_TDS.lib	HT66F3185 单通道 TDS 库
H166F3185	HT66F3185_D_TDS.lib	HT66F3185 双通道 TDS 库
UT44E2105	HT66F3195_S_TDS.lib	HT66F3195 单通道 TDS 库
H100F3195	HT66F3195_D_TDS.lib	HT66F3195 双通道 TDS 库
HT66F2030	HT66F2030_S_TDS.lib	HT66F2030 单通道 TDS 库

6.1 TDS 宏定义与库函数

平台会根据 TDS 的配置生成如下定义:

• 在 define.h 文件根据配置定义 Fun_TDS1 和 Fun_TDS2, 37/57/67 为对应的探 针类型(若为单通道则只定义 Fun_TDS1)

#define	Fun_TDS1	37
#define	Fun_TDS2	37

在 IO_define.h 档定义 TDS 相关配置,其中 TDSn_POS_ADDR、TDSn_NEG_ADDR 为两个 TDS 脉冲引脚对应的输入/输出口寄存器地址,TDSn_POS_OFFSET_ADDR、TDSn_NEG_OFFSET_ADDR 为两个脉冲引脚输入/输出口寄存器的配置值;TDSn_AD_CHANEL 为 TDS A/D 采集引脚的通道、TDSn_IO_MULTI_ADDR 为 TDS A/D 采集引脚对应的引脚共用寄存器地址,TDSn_IO MULTI 为该 TDS A/D 采集引脚共用寄存器的配置值;

0X14	TDS1脉冲引脚配置
0X8 0	
0X14	
0X2 0	
5	TDS1 A/D 华佳 引 助 配 罢
0x44	IDSI AD 本示 开构记上
0x20	
0X41	TDS2脉冲引脚配置
0X 04	
0X14	
0X 02	
3	TDS2 A/D采焦引脚配置
0x44	1002100个示打构包里
0x 08	
	0X14 0X80 0X14 0X20 5 0x44 0x20 0X41 0X04 0X14 0X14 0X02 3 0x44 0x08

TDS 库所包含的函数如下表所示:

函数	说明
TDS_Init()	TDS 初始化函数
Start_TDS1()	TDS 通道1采集函数
Start_TDS2()	TDS 通道2采集函数
Get_TDS_C1_K()	TDS 通道1计算电导率函数
Get_TDS_C2_K()	TDS 通道2计算电导率函数
GET_NTC1_Value()	温度采集函数,直接返回温度值

6.1.1 TDS 初始化函数

TDS 初始化函数: TDS Init(),是对 TDS 引脚和参数进行初始化。

6.1.2 TDS 采集函数

TDS 采集函数: Start_TDS1(), Start_TDS2(), 是开启 TDS ADC 功能, 进行 TDS 采集。Start_TDS1()为 TDS 通道 1 采集函数; Start_TDS2()为 TDS 通道 2 采集 函数, 若只定义了单通道 TDS 则对应为通道 1 的函数。

6.1.3 TDS 计算函数

TDS 计算函数: Get_TDS_C1_K(), Get_TDS_C2_K(), 是处理 TDS 数据, 得出 TDS 电导率。

Get_TDS_C1_K()为TDS通道1的计算函数,Get_TDS_C2_K()为通道2的计 算函数,计算结束后对应通道1标志位F_TDS1Count_Done 置1(通道2标志 位为F_TDS2Count_Done),对应的通道1结果保存在变量U16_TDS1_k中(通 道2变量为U16_TDS2_k),结果放大了10倍,单位为us/cm。

经过计算函数得出的结果并没有经过温补和 TDS 校准,温补和校准函数定义 在 process.c 中,温补函数为: Compensation_TDS1() 和 Compensation_TDS2(), 温补后的电导率值同样保存在变量 U16_TDS1_k 和 U16_TDS2_k 中;校准函数 为: TDS_fun_handle(), TDS 校准后的结果保存在变量 TDS1_K (通道 2 保存在 TDS2 K)中。温补和校准的结果都放大了 10 倍,单位为 us/cm。

6.1.4 温度采集宏定义与函数

平台会根据 NTC 的配置生成如下定义:

 在 define.h 文件根据配置定义 Fun_NTC1 和 Fun_NTC2(若为单通道则只定义 Fun_NTC1)

#define	Fun_NTC1
#define	Fun_NTC2

•在 IO_define.h 档定义 NTC 相关配置,其中 NTCn_IO_MULTI_ADDR 为 NTC A/D 采集引脚对应的引脚共用寄存器地址,NTCn_IO_MULTI 为该 NTC A/D 采集引脚共用寄存器的配置值;NTCn_sadc0、NTCn_sadc1、NTCn_sadc2 为 NTC A/D 转换寄存器的配置。

#define NTC1_TYPE	2	NTC1电路类型
#define NTC1_TOP	27	NTC1温度上下限
#define NTC1_FLOOR	0	Mici Zer I K
#define NTC1_IO	_pb0	NTC1电路控制I/O
#define NTC1_IOC	pbc0	
#define NTC1_IO_MULTI_ADDR	0x44	NTC1 A/D采佳引脚配署
#define NTC1_I0_MULTI	0x 02	1101100次永升和20正
#define NTC1_sadc0	0x11	NTC1 A/D 杜拉新左照时里
<pre>#define NTC1_sadc1</pre>	0x 03	NICI A/D转换暂存益配直
<pre>#define NTC1_sadc2</pre>	0x 00	
#define NTC2_TYPE	2	NTC1电路类型
#define NTC2_TOP	99	NTC1 温度上下限
#define NTC2_FLOOR	8	NICIÆQ工厂K
#define NTC2_IO	_pb5	NTC1电路控制I/O
#define NTC2_IOC	 pbc5	
#define NTC2_IO_MULTI_ADDR	0x44	NTC1 A/D 孚佳引 脚配 罟
#define NTC2 IO MULTI	0x 04	NICI ND 木未 升 本 L
#define NTC2_sadc0	0x12	NTC2 AD/转换暂存器配置
<pre>#define NTC2_sadc1</pre>	0x 03	
#define NTC2_sadc2	ព× ពព	

•在 NTC Table.h 中写入温度 A/D 值表

```
const unsigned int NTC1_table[] =
BK.
     980, 1017, 1054, 1093, 1132, 1172, 1212, 1253, 1295, 1336,
     1379, 1422, 1466, 1509, 1554, 1598, 1642, 1687, 1732, 1777,
     1822, 1868, 1912, 1958, 2002, 2047, 2091, 2136, 2180, 2223,
     2266, 2309, 2352, 2393, 2435, 2476, 2516, 2556, 2595, 2633,
     2671,2708,2745,2781,2816,2851,2884,2917,2950,2981,
     3012,3043,3072,3101,3129,3156,3183,3209,3234,3259,
     3283, 3306, 3329, 3351, 3372, 3393, 3414, 3433, 3452, 3471,
     3489,3506,3523,3540,3556,3571,3586,3601,3615,3629,
     3642,3655,3667,3679,3691,3702,3713,3724,3734,3744,
     3754, 3763, 3772, 3781, 3789, 3797, 3806, 3813, 3821, 3828
 3;
 const unsigned int NTC2_table[] =
ЗK
     980, 1017, 1054, 1093, 1132, 1172, 1212, 1253, 1295, 1336,
     1379, 1422, 1466, 1509, 1554, 1598, 1642, 1687, 1732, 1777,
     1822, 1868, 1912, 1958, 2002, 2047, 2091, 2136, 2180, 2223,
     2266,2309,2352,2393,2435,2476,2516,2556,2595,2633,
     2671,2708,2745,2781,2816,2851,2884,2917,2950,2981,
     3012,3043,3072,3101,3129,3156,3183,3209,3234,3259,
     3283, 3306, 3329, 3351, 3372, 3393, 3414, 3433, 3452, 3471,
     3489,3506,3523,3540,3556,3571,3586,3601,3615,3629,
     3642,3655,3667,3679,3691,3702,3713,3724,3734,3744,
     3754,3763,3772,3781,3789,3797,3806,3813,3821,3828
 ;};
```

温度采集函数:温度采集函数定义在 Temp.c 文件中,NTC 通道 1 对应的采集 函数为 GET_NTC1_Value(),通道 2 对应为 GET_NTC2_Value()。函数直接返回 温度值,结果放大了 10 倍,单位为 ℃。

6.2 通信说明

TDS 模块支持 UART 或 IIC 通信,通过显示板上的 USB to UART (HT42B534-2) 或 USB to IIC (HT42B532-1) 连接 USB 与平台通信。

6.2.1 宏定义与通讯协议

在平台选择通信为 UART (或 IIC), 会在 define.h 档定义 Fun_Communicate 和 Fun_UART (或 Fun_IIC)。

#define Fun_UART #define Fun_Communicate

通信引脚定义在 IO_define.h 档中,引脚定义对应的通信引脚如下表:

MCU	引脚定义	定义值	通信引脚
	LIADT TY	0x00	选择 PD2 为 TX 引脚
	UARI_IX	0x02	选择 PB3 为 TX 引脚
	LIADT DY	0x00	选择 PD1 为 RX 引脚
UTCCE0105	UARI_KA	0x01	选择 PB4 为 RX 引脚
H166F0185		0x00	选择 PC4 为 SDA 引脚
	IIC_SDA	0x10	选择 PA3 为 SDA 引脚
	UC SCI	0x00	选择 PC5 为 SCL 引脚
	IIC_SCL	0x08	选择 PB6 为 SCL 引脚
	LIADT TV	0x00	选择 PC6 为 TX 引脚
	UARI_IA	0x02	选择 PB3 为 TX 引脚
	LIADT DY	0x00	选择 PC5 为 RX 引脚
UT66E0176	UARI_KA	0x01	选择 PB4 为 RX 引脚
H100F0170		0x00	选择 PC3 为 SDA 引脚
	IIC_SDA	0x10	选择 PA3 为 SDA 引脚
	UC SCI	0x00	选择 PC4 为 SCL 引脚
	IIC_SCL	0x08	选择 PB6 为 SCL 引脚
	LIADT TV	0x00	选择 PA6 为 TX 引脚
	UARI_IA	0x02	选择 PB3 为 TX 引脚
UT66E010	LIADT DV	0x00	选择 PA7 为 RX 引脚
11001019	UARI_KA	0x01	选择 PB4 为 RX 引脚
	IIC_SDA		PA3为SDA引脚
	IIC_SCL		PB6为SCL引脚
		0x00	选择 PC0 为 TX 引脚
		0x01	选择 PC1 为 TX 引脚
	UARI_IA	0x02	选择 PD1 为 TX 引脚
		0x03	选择 PD2 为 TX 引脚
UT66E2195	LIADT DV	0x00	选择 PD1 为 RX 引脚
110053183		0x01	选择 PC1 为 RX 引脚
		0x00	选择 PC4 为 SDA 引脚
		0x01	选择 PA3 为 SDA 引脚
	UC SCI	0x00	选择 PC5 为 SCL 引脚
	IIC_SCL	0x01	选择 PB6 为 SCL 引脚

MCU	引脚定义	定义值	通信引脚
	LIADT TV	0x00	选择 PC0 为 TX 引脚
	UARI_IA	0x01	选择 PD2 为 TX 引脚
	LIADT DV	0x00	选择 PD1 为 RX 引脚
LIT66E2105	UARI_KA	0x01	选择 PC1 为 RX 引脚
H100F3193		0x00	选择 PC4 为 SDA 引脚
	IIC_SDA	0x01	选择 PA3 为 SDA 引脚
		0x00	选择 PC5 为 SCL 引脚
	IIC_SCL	0x01	选择 PB6 为 SCL 引脚
HT66F2030		0x00	选择 PA3 为 RX 引脚
	UART_RX	0x01	选择 PA7 为 RX 引脚
		0x02	选择 PB1 为 RX 引脚
		0x00	选择 PA5 为 TX 引脚
	UART_TX	0x01	选择 PA6 为 TX 引脚
		0x02	选择 PB2 为 TX 引脚
		0x00	选择 PA5 为 SDA 引脚
	IIC_SDA	0x01	选择 PB0 为 SDA 引脚
		0x02	选择 PB1 为 SDA 引脚
	IIC SCL		选择 PB2 为 SCL 引脚

UART 定义示例如下:

● define.h 档中

#define	Fun	Communicate	1
#define	-	Fun_UART	1

● IO_define.h 档中

#define	UART_TX	0x 03
#define	UART_RX	0x 0 0

若选择通信方式为 IIC 通信,是在 IIC 中断进行数据的接收与发送; UART 通信是在中断进行数据接收,通过 Send_Data()函数发送数据。Rx_Data_Handle()为对接收数据进行处理的函数。

6.2.2 通信协议

TDS 水质检测产品开发平台支持 UART 或 IIC 通信 (IIC 默认从机地址为 0x7A), 并且具有两套通信协议格式,一套是一般通信格式,该格式可在 UART 或 IIC 通信中使用,另一套是 Modbus 通信格式,该格式仅在 UART 通信中使用 (Modbus 默认从机地址为 0x7A)。通信时 TDS 平台作为主机,TDS 模块作为从 机,可以进行校准 TDS 值和温度值,获取探针信息、校准信息、TDS 值和温度 值以及设置模块进入休眠模式等操作。两种通信格式如下:

6.2.2.1 一般通信格式

TDS 水质监测模块一般通信协议								
帧格式(所有通信都使用此格式)								
字符类型	帧头		数据	长度	命令		数据	校验和
字节数 (byte)	1		1	1	1		L	1
数据	0x55		Ler	ngth	Comman	d	Data	Checksum
说明	Length: 包含 Length+Command+Data+Checksum 的长度 = 1+1+L+1; Data: 先传高字节,再传低字节; Checksum: 帧头至数据单字节累加;							
	1、主机获明	反产品	信息 (Co	mmand:0x	00):			
	Byte	1	Byte2	Byte3	Byte4~7	Byte8	3	
	帧头	~	长度	命令	数据	校验利	П	
	0x5	5	0x07	0x00	0x00	0x5C		
	注: 产 2、主机获耳	品信息 反 TDS	息主要提供 5.校准信息	共探针类型 見 (Comma	2相关信息。 md:0x01):			
	Byte	1	Byte2	Byte3	Byte4	Byte5~	-7 Byte8	
	帧头	<	长度	命令	数据	数据	校验和	
	0x5	5	0x07	0x01		0x00		
	注: By 3、主机获耳	te4 为 又 NTC	要获取的 C 校准信』	TDS 通道 急 (Comma	; Byte4=0x(and:0x02):)1:表示	要获取通道1自	的TDS 校准信息。
主机命令	Byte	1	Byte2	Byte3	Byte4	Byte5~	-7 Byte8	
	帧头	~	长度	命令	数据	数据	校验和	
	0x5	5	0x07	0x02		0x00		
	注: By 4、主机设置	te4 为 置模块	要获取的 进入 TDS	NTC 通道 5 校准模式	C, Byte4=0x)1:表示 :0x03):	要获取通道1自	的NTC 校准信息。
	Byte	1	Byte2	Byte3	Byte4~7	Byte8	3	
	帧头	~	长度	命令	数据	校验利	П	
	0x5	5	0x07	0x03		•••		
注: (1) Byte4 为设置的 TDS 通道, Byte4=0x01: 表示设置 TDS 通道 1 进入校准模 (2) Byte5 为校准模式和校准点, bit7 为校准模式, bit7=0 表示单点模式, bit7= 示多点模式; bit6~bit0 为校准点。							1 进入校准模式。 点模式,bit7=1 表	

(3) Byte6~Byte7 为主机需传送给从机的标准溶液浓度,浓度值放大了 10 倍, 1000.0us/cm, Byte6~0x27, Byte7=0x10 (先传高字节,再传低字节); (4) 从机接到主机命令后,先传回应答,表示已接收命令,正在校准;主机下 一段时间获取校准信息,直到校准完成。 5、主机设置模块进入 NTC 校准模式 (Command:0x04): Byte1 Byte2 Byte3 Byte4-7 Byte8 ifty by Log Byte2 byte4 byte1 Byte2 byte3 Byte4-7 Byte8 ifty by Log Byte3 byte4-7 Byte8 ifty byte4 为设置的 NTC 通道, Byte4=0x01:表示设置 NTC 通道 1 进入校准 (1) Byte4 为设置的 NTC 通道, Byte4=0x01:表示设置 NTC 通道 1 进入校准 (2) Byte5~Byte6 为主机需传送给从机的校准溶液温度,所传的溶液温度值放 10 倍,如 Byte5=0x01,Byte6=0x01,则溶液温度为 25.7°C; (3) 从机接到主机命令后,先传回应答,表示已接收命令,正在校准;主机下 -段时间获取校准信息,直到校准完成。 主机命令 Byte1 Byte2 Byte3 Byte4-7 Byte8 ifty byte3 byte4-7 Byte8 ifty byte4 byte3 byte4 byte4 byte3 byte4-7 Byte8 ifty byte4 byte3 byte3 Byte4-7 Byte8 ifty byte3 byte4 byte3 byte4 byte8 ifty byte3 byte4 byte3 byte4 byte8 ifty byte3 byte3 byte4 byte8 ifty byte3 byte3 byte4 byte8 ifty byte3 byte4 byte8 ifty byte3 byte3 byte4 byte8 ifty byte3 byte4 byte3 byte4 byte8 ift		TDS 水质监测模块一般通信协议						
Byte1 Byte2 Byte3 Byte4-7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x04 ··· ··· 注: (1) Byte4 为设置的 NTC 通道, Byte4=0x01: 表示设置 NTC 通道 1 进入校准 (2) Byte5~Byte6 为主机需传送给从机的校准溶液温度,所传的溶液温度值成 10 倍,如 Byte5=0x01,Byte6=0x01,则溶液温度为 25.7℃; (3) 从机接到主机命令后,先传回应答,表示已接收命令,正在校准;主机下 一段时间获取校准信息,直到校准完成。 6、主机获取模块电导率与温度值 (Command:0x05): Byte1 Byte2 Byte4-7 Byte8 帧头<		Byte7 为主机需传送给从机的标准溶液浓度,浓度值放大了 10 行 hus/cm,Byte6=0x27,Byte7=0x10 (先传高字节,再传低字节); 到主机命令后,先传回应答,表示已接收命令,正在校准;主材 计间获取校准信息,直到校准完成。 快进入 NTC 校准模式 (Command:0x04);	音,如 几可每隔					
主机命令 転皮 前令 数据 校验和 注: (1) Byte4 为设置的 NTC 通道, Byte4=0x01:表示设置 NTC 通道 1 进入校准 (2) Byte5-Byte6 为主机需传送给从机的校准溶液温度,所传的溶液温度值放 10 倍,如 Byte5=0x01,Byte6=0x01,则溶液温度为 25.7°C; (3) 从机接到主机命令后,先传回应答,表示已接收命令,正在校准;主机下 一段时间获取校准信息,直到校准完成。 6、主机获取模块电导率与温度值 (Command:0x05): Byte1 Byte2 較量 命令 数据 校验和 0x55 0x07 0x05 注: (1) Byte4 为设置的通道,Byte4=0x01:表示设置要获取通道 1 的电导率和温 (2) 电导率单位 us/cm,温度单位是 ℃,所获取的电导率值与温度值都放大了 17、主机设置模块进入休眠模式 (Command:0x06): Byte1 Byte2 Byte3 Byte4 Byte4 7 Byte8 帧头 长度 命令 数据 校验和 (2) 电导率单位 us/cm,温度单位是 ℃,所获取的电导率值与温度值都放大了 17、 1. 1. 1. 1. 1. 1. 11 Byte1 Byte2 Byte3 Byte4-7 Byte8 1. 12. 13. K度 命令 数据 校验和 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Byte2 Byte3 Byte4~7 Byte8						
主机命令 0x07 0x04 0x04 注: (1) Byte4 为设置的 NTC 通道, Byte4=0x01: 表示设置 NTC 通道 1 进入校准 (2) Byte5~Byte6 为主机需传送给从机的校准溶液温度,所传的溶液温度值放 10 倍,如 Byte5=0x01, Byte6=0x01, 则溶液温度为 25.7℃; (3) 从机接到主机命令后,先传回应答,表示已接收命令,正在校准;主机下 一段时间获取校准信息,直到校准完成。 6、主机获取模块电导率与温度值 (Command:0x05): <u>数te1 Byte2 Byte3 Byte4~7 Byte8</u> <u>帧头 长度 命令 数据 校验和</u> 0x55 0x07 0x05 … 注: (1) Byte4 为设置的通道, Byte4=0x01: 表示设置要获取通道 1 的电导率和温 (2) 电导率单位 us/cm,温度单位是 ℃,所获取的电导率值与温度值都放大了 17、主机设置模块进入休眠模式 (Command:0x06): <u>数te1 Byte2 Byte3 Byte4~7 Byte8</u> <u>帧头 长度 命令 数据 校验和</u> 0x55 0x07 0x06 0x00 0x62 注: (1) Byte4 为设置的通道, Byte4~7 Byte8 帧头 长度 命令 数据 校验和 (2) 电导率单位 us/cm,温度单位是 ℃,所获取的电导率值与温度值都放大了 17 7、主机设置模块进入休眠模式 (Command:0x06): <u>1 出现 告述 平台 0x07 0x06 0x00 0x62</u> 注: 人机接收到命令后直接进入休眠模式,无应答信号传回;		长度 命令 数据 校验和 0x07 0x04 ···· ····						
 6、主机获取模块电导率与温度值 (Command:0x05): Byte1 Byte2 Byte3 Byte4~7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x05 注: (1) Byte4 为设置的通道, Byte4=0x01:表示设置要获取通道 1 的电导率和温 (2) 电导率单位 us/cm, 温度单位是 ℃,所获取的电导率值与温度值都放大了 7、主机设置模块进入休眠模式 (Command:0x06): Byte1 Byte2 Byte3 Byte4~7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x06 0x00 0x62 注: 从机接收到命令后直接进入休眠模式,无应答信号传回; 	主机命令	为设置的 NTC 通道, Byte4=0x01:表示设置 NTC 通道 1 进入校 Byte6 为主机需传送给从机的校准溶液温度,所传的溶液温度值 如 Byte5=0x01,Byte6=0x01,则溶液温度为 25.7℃; 到主机命令后,先传回应答,表示已接收命令,正在校准;主材 时间获取校准信息,直到校准完成。	准模式。 放大了 几可每隔					
Byte1 Byte2 Byte3 Byte4~// Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x05 ··· ··· 注: (1) Byte4 为设置的通道, Byte4=0x01: 表示设置要获取通道 1 的电导率和温 (2) 电导率单位 us/cm, 温度单位是 ℃, 所获取的电导率值与温度值都放大了 1 7、主机设置模块进入休眠模式 (Command:0x06): Byte1 Byte2 Byte3 Byte4~7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x06 0x00 0x62 注: 从机接收到命令后直接进入休眠模式,无应答信号传回; 1 出机发送离号信息绘主机(Command:0x00) 1		R田 导率 与温度值 (Command:0x05):						
一次人 以次 以 <td></td> <td>Byte2 Byte3 Byte4~/ Byte8</td> <td></td>		Byte2 Byte3 Byte4~/ Byte8						
注: (1) Byte4 为设置的通道, Byte4=0x01:表示设置要获取通道 1 的电导率和温 (2) 电导率单位 us/cm,温度单位是 ℃,所获取的电导率值与温度值都放大了 7、主机设置模块进入休眠模式 (Command:0x06): Byte1 Byte2 Byte3 Byte4~7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x06 0x00 0x62 注: 从机接收到命令后直接进入休眠模式,无应答信号传回;		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Byte1 Byte2 Byte3 Byte4~7 Byte8 帧头 长度 命令 数据 校验和 0x55 0x07 0x06 0x00 0x62 注: 从机接收到命令后直接进入休眠模式,无应答信号传回; 1 <		注: (1) Byte4 为设置的通道, Byte4=0x01:表示设置要获取通道1的电导率和温度。 (2) 电导率单位 us/cm,温度单位是℃,所获取的电导率值与温度值都放大了10倍。 7、主机设置模块进入休眠模式 (Command:0x06):						
帧头 长度 命令 数据 校验和 0x55 0x07 0x06 0x00 0x62 注: 从机接收到命令后直接进入休眠模式,无应答信号传回;		Byte2 Byte3 Byte4~7 Byte8						
0x55 0x07 0x06 0x00 0x62 注:从机接收到命令后直接进入休眠模式,无应答信号传回;		长度 命令 数据 校验和						
注:从机接收到命令后直接进入休眠模式,无应答信号传回;		0x07 0x06 0x00 0x62						
1 出机尖送本日信自绘 之机 (Common 1.0-00)		收到命令后直接进入休眠模式,无应答信号传回;						
1、 <u>外</u> 机及运厂 m 信 芯 结 土 7 L (Command: 0 X 8 0):		l信息给主机 (Command:0x80):						
Byte1 Byte2 Byte3 Byte4~10 Byte11		Byte2 Byte3 Byte4~10 Byte11						
帧头 长度 命令 数据 校验和		长度 命令 数据 校验和						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>0x0a</u> 0x80 ···· ···						
从机命令 注: (1) Byte4: 通道 1 探针类型; (Byte4=0x00,表示该通道无 TDS, Byte4=37/2 表示对应的探针型号); (2) Byte5: 通道 2 探针类型; (Byte5=0x00,表示该通道无 TDS, Byte5=37/2 表示对应的探针型号)。 (2) Byte(从机命令	通道1探针类型;(Byte4=0x00,表示该通道无 TDS,Byte4=3 t应的探针型号); 通道2探针类型;(Byte5=0x00,表示该通道无 TDS,Byte5=3 t应的探针型号)。	7/57/67 7/57/67					

TDS 水质监测模块一般通信协议										
	2、从	人机发送 TI	DS 校准信息	息给主机 (C	ommand:0x	.81):				
		Byte1	Byte2	Byte3	Byte4~10	Byte11				
		帧头	长度	命令	数据	校验和				
		0x55	0x0a	0x81	•••	•••				
	注:									
	 (1) Byte4=0x00,表示 TDS 未校准; Byte4=0x01,表示已校准; (2) Byte5 为发送的通道,Byte5=0x01:表示发送的是通道 1 的 TDS 校准信息。 (3) Byte6 为校准模式和校准点,bit7 为校准模式,bit7=0表示单点模式,bit7=1示多点模式;bit6~bit0为当前的 TDS 校准点。 (4) Byte7~8 为校准的标准浓度 us/cm,浓度值放大了 10 倍 (先传高字节,再传空节) 									
		(5) Byte9	~10 为校准	TDS 时的	溶液温度℃	C, 所传的温	温度值放大了 10 倍。例如,			
	3、从	Byte7 人机发送 N	'=0x01,By ΓC 校准信息	rte8=0x01, 急给主机 (C	则校准溶剂 Command:0x	§温度为 25. x82):	.7°C .			
		Byte1	Byte2	Byte3	Byte4~10	Byte11				
		帧头	长度	命令	数据	校验和				
		0x55	0x0a	0x82	•••	•••				
	注:									
从机命令	 (1) Byte4=0x00,表示 NTC 未校准; Byte4=0x01,表示已校准; (2) Byte5 为发送的通道,Byte5=0x01:表示发送的是通道1的NTC 校准信息。 (3) Byte6~7 校准的溶液温度 ℃,所传的校准温度值放大了10倍。例如,Byte7=0x00,Byte8=0xfa,则校准溶液温度为25.0℃。 4、从机传回应答信号 (Command:0x83/0x84); 									
		Byte1	Byte2	Byte3	Byte4~10) Byte11				
		帧头	长度	命令	数据	校验和				
		0x55	0x0a	0x83/0x84	•••	•••				
	注: 当从机接收到主机发送的设置从机进入 TDS/NTC 校准模式时,从机会传回应 答信号。									
		Byte1	$\frac{1}{2} - \frac{1}{2} $	Byte3	Byte4~10	Byte11				
			 长度	 合今	byte+=10 数据	Dyten 校验和				
		0x55	0x0a	0x85	•••	•••				
		注: (1) Byte4 (2) Byte5- 10 倍	为发送的道 ~6 为电导 [⊴] ;	围道,Byte4 率 (us/cm),	4=0x01:表 先传高字节	示发送的是 5,再传低气	;通道1的电导率和温度。 字节,所传的电导率值放大			
		任: (1) Byte4 (2) Byte5- 10 倍 (3) Byte7-	为发送的道 ~6 为电导 ³ ; ~8 为温度 (围道,Byte4 率 (us/cm), (°C),所传	↓=0x01: 表 先传高字节 的温度值放	示发送的是 5,再传低雪 大了10倍。	∷通道1的电导率和温 字节,所传的电导率{			

6.2.2.2 Modbus 通信格式

协议说明

TDS 水质检测产品开发平台支持 Modbus RTU 串口类型,在使用 Modbus 通信协议进行通信时,按照其通信逻辑,对设备上的寄存器进行读写操作(寄存器为虚拟的,实际并不存在)。

```
通信接口: UART 9600bps, 8-N-1
```

TDS 水质检测模块 Modbus 通信协议									
帧格式(所有通	信都使用此格式)								
字符类型	地址	功能码	数据	CRC 校验					
字节数 (byte)	1	1	L	2					
数据	0x7A	Command	Data	CRC-16					
CRC 校验说明	TDS 水质检测产品开, 一笔数据结束,以下打 unsigned int GetModbu { unsigned char temp; volatile unsigned int w unsigned char i = 0, j = wcrc = 0XFFFF; for (i = 0; i < len; i++) { temp = data[i] & 0X00 wcrc ^= temp; for (j = 0; j < 8; j++) { if (wcrc & 0X0001) { wcrc >>= 1; wcrc ^= 0XA001; } else { wcrc >>= 1; } } return ((wcrc << 8) (wo 如准备发送的内容为: 值为 0xCE40,最后发 0x40。	&平台的 CRC 校验计算 是供了一种 CRC 计算的 sCRC16_Cal(volatile ur /crc; = 0;))FF;))FF; (0; (0; (0; (0; (0; (0; (0; (0; (0; (0	≱定从反达的第一毛数: p代码,供参考: nsigned char *data, unsig 0x00、0x00、0x02,月 x03、0x00、0x00、0x02,0x	据开始到 CRC 位的前 gned char len) 目该函数计算出 CRC 00、0x02、0xCE、					

		r	FDS 水质检测模块 Modbu	s 通信协议				
	1,	主机获取模块产	^立 品信息 / 电导率与温度值	/ 电导率校准值 /	温度校准值命令:			
		Bvte1	地址	0x7A				
		Byte2		0x03				
		Byte3		高八位				
		Bvte4	寄存器起始地址	低八位				
		Byte5		0x00				
		Byte6	奇仔器数量	低八位				
		Byte3 Byte7		高八位				
		Byte8	CRC 校验	低八位				
		注,			1			
		 (1) Byte3~4 寄存器起始地址说明: (1) Byte3~4 寄存器起始地址说明: (1) Byte3~4 寄存器起始地址说明: (1) Byte3~4 寄存器起始地址说明: (1) Byte3~4 寄存器取通道 1 的电导率和温度值 (2) Byte6 寄存器数量说明: (2) Byte6 寄存器数量说明: (3) Byte3~4 为 0x0000, 0x0002, 0x0004, 0x0006, 0x0008 时, 其值为 0x02; 						
	2,	主机设置模块	进入电导率 / 温度校准模式					
		Byte1	地址	0x7A				
主机命令		Byte2	功能码	0x10				
		Byte3	灾方鬼却始地起	高八位				
		Byte4	可什硷起知地址	低八位				
		Byte5	宏方現粉県	0x00				
		Byte6	可什硷奴里	0x01				
		Byte7	写入字节长度	0x02				
		Byte8	抗准估	高八位				
		Byte9	1又11日.	低八位				
		Byte10	CPC 校验	高八位				
		Byte11		低八位				
		注:						
	3,	 (1) Byte3~4 为要写入校准值的寄存器地址: 0x0006:表示写入的是通道1电导率的校准值 0x0008:表示写入的是通道2电导率的校准值 0x000A:表示写入的是通道1温度的校准值 0x000B:表示写入的是通道2温度的校准值 (2) Byte8~9 为要写入的校准值。 、主机设置模块进入休眠模式: 						
		Byte1	地址	0x7A				
		Byte2	功能码	0x42				
		Byte3	数据	0x00				
		Byte4		0x60				
		Byte5	CRC 校验	0xB9				
		注: 从机接收	到命令后直接进入休眠模式	、	与回。			

		T	DS 水质检测	则模块 Modbu	s 通信协议		
	1,	从机回复产品信	ē息 / TDS 值	直和温度值 / TI	DS 校准值:		
		Byte1	土	地址	0x7A		
		Byte2	功	能码	0x03		
		Byte3	数据字	Z节长度	0x04		
		Byte4~7	娄	女据			
		Byte8	CDC	r 标码	高八位		
		Byte9	CRU	- 1232	低八位		
		注: Byte4~7 根	据主机发送	的命令而定,	具体为:	-	
		主机命令	字节		内容		
			Byte4	通道 1 信息 bit7: 1 有 N bit6~bit0: 7	通道1信息 bit7:1有NTC,0无NTC bit6~bit0:TDS 校准点数量		
		苏阳立日伫自	Byte5	通道 2 信息 bit7: 1 有 N bit6~bit0: 7	通道 2 信息 bit7: 1 有 NTC, 0 无 NTC bit6~bit0: TDS 校准点数量		
		<u></u> 获取厂 加 日	Byte6	通道 1 探针学 Byte6=0x00 Byte6=37/57	通道1探针类型 Byte6=0x00表示该通道无TDS Byte6=37/57/67表示对应的探针型号		
			Byte7	通道 2 探针类型 Byte7=0x00 表示该通道无 TDS Byte7=37/57/67 表示对应的探针型号			
从机应答		获取电导率和滥	Byte4~5	电导率值(单位: 0.1us/cm) 先传高字节,再传低字节			
// () ()) []		度值	Byte6~7	温度值(单位: 0.1℃) 先传高字节,再传低字节			
		获取电导率校准 使和校准时的消	È Byte4~5	校准电导率的标准浓度(单位: 0.1us/cm) 先传高字节,再传低字节			
		度值	Byte6~7	校准电导率时的溶液温度(单位: 0.1℃) 先传高字节,再传低字节			
		获取温度校准值 Byte4~5		校准的溶液温度(单位: 0.1℃) 先传高字节,再传低字节			
	2,	从机回复 TDS 相	交准结果 / N	NTC 校准结果	:		
		Byte1	Ħ	也址	0x7A		
		Byte2	功	能码	0x10		
		Byte3	安方思	まつ から まわ ちし	高八位		
		Byte4	可什奋		低八位		
		Byte5	++++	現粉旱	0x00		
		Byte6	句仔:	奋蚁里	0x01		
		Byte7	OP	1 长顶人	高八位		
		Byte8	CRC	- 1文与亚	低八位		
		注: 当从机接收 址,具体如	到正确命令 下:	▶时将会回复ヌ	时应命令;Byte3	~4 为对应校准	值的寄存器地
		0x0006:表	示通道1电	目导率校准值的	勺寄存器地址		
		0x0008:表	示通道2月	已导率校准值的	勺寄存器地址		
		0x000A: 쿡	表示通道11	品度校准值的	寄存器地址		
		0x000B: 表	長示通道2%	品度校准值的智	哥存器地址		

从机通信处理

Modbus 通信协议允许从机根据主机命令的处理结果发送两种类型的回复,一种是按照上一节通信协议进行回复;另一种是处理异常的回复,异常回复可为用户提供处理过程中的错误相关信息,异常回复格式如下:

Byte1	地址	0x7A
Byte2	功能码	主机功能码 + 0x80
Byte3	错误代码	
Byte4	CDC 校卧	高八位
Byte5	CRC 127M	低八位

错误代码提供错误相关信息,有以下几种:

错误类型	错误代码
主机发送了错误的功能码	0x01
主机发送了错误的寄存器起始地址	0x02
主机发送了错误的寄存器数量	0x03
从机当前无法校准	0x04

七、附录

7.1 实物图

7.2 开发板原理图

HT66F0176 TDS Module

HT66F019 TDS Module

HT66F3185 TDS Module

HT66F3195 TDS Module

HT66F2030 TDS Module

7.3 测试

VDD=5.0V; HIRC=8MHz; 探针型号:TDS-57;											
标准	仪器	探铃	†1	探铃	+ 2	探针 3		探针1	探针 2	探针 3	
NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	与标准的	义器相对i	吴差 (%)	
25.3	52.0	25.4	50.3	25.4	50.5	25.4	50.3	-3.27	-2.88	-3.27	
25.3	61.6	25.3	61.0	25.3	61.7	25.2	61.3	-0.97	0.16	-0.49	
25.4	80.8	25.5	79.0	25.5	80.5	25.4	80.0	-2.23	-0.37	-0.99	
25.4	101.5	25.4	100.3	25.4	101.0	25.4	101.0	-1.18	-0.49	-0.49	
25.4	121.0	25.4	119.2	25.4	120.4	25.4	120.6	-1.49	-0.50	-0.33	
25.4	158.8	25.3	157.5	25.3	158.8	25.3	159.6	-0.82	0.00	0.50	
25.4	211.0	25.3	207.0	25.3	208.6	25.4	210.7	-1.90	-1.14	-0.14	
25.4	269.0	25.3	265.4	25.3	267.6	25.3	270.6	-1.34	-0.52	0.59	
25.5	302.0	25.4	297.4	25.4	299.9	25.4	304.1	-1.52	-0.70	0.70	
25.4	353.0	25.3	348.4	25.3	351.5	25.4	355.9	-1.30	-0.42	0.82	
25.3	403.0	25.2	397.7	25.2	400.6	25.2	407.5	-1.32	-0.60	1.12	
25.4	453.0	25.3	448.2	25.3	451.8	25.3	458.9	-1.06	-0.26	1.30	
25.5	502.0	25.3	497.8	25.4	500.3	25.4	507.9	-0.84	-0.34	1.18	
25.5	601.0	25.5	596.7	25.5	599.7	25.5	609.8	-0.72	-0.22	1.46	
25.4	702.0	25.3	698.7	25.3	700.0	25.3	710.4	-0.47	-0.28	1.20	
25.4	802.0	25.4	801.1	25.4	801.1	25.4	813.0	-0.11	-0.11	1.37	
25.5	904.0	25.4	905.2	25.4	901.6	25.4	915.1	0.13	-0.27	1.23	
25.6	1008.0	25.5	1011.3	25.5	1007.3	25.5	1020.5	0.33	-0.07	1.24	
25.6	1209.0	25.5	1219.0	25.5	1197.5	25.5	1222.8	0.83	-0.95	1.14	
25.7	1406.0	25.6	1419.7	25.6	1408.8	25.6	1418.1	0.97	0.20	0.86	
25.6	1608.0	25.6	1634.2	25.6	1608.1	25.6	1608.1	1.63	0.01	0.01	
25.7	1821.0	25.9	1864.8	25.9	1813.3	25.8	1830.2	2.41	-0.42	0.51	
25.5	2070.0	25.5	2067.3	25.5	2007.7	25.5	2054.0	-0.13	-3.01	-0.77	
25.5	2220.0	25.5	2223.8	25.5	2143.4	25.5	2174.5	0.17	-3.45	-2.05	
25.4	2410.0	25.4	2413.9	25.4	2358.1	25.3	2379.1	0.16	-2.15	-1.28	
25.5	2630.0	25.4	2667.1	25.4	2575.8	25.4	2583.3	1.41	-2.06	-1.78	
25.4	2810.0	25.3	2832.4	25.3	2732.3	25.3	2769.1	0.80	-2.77	-1.46	
25.3	3010.0	25.3	3065.9	25.3	2943.1	25.3	2947.8	1.86	-2.22	-2.07	
25.3	3300.0	25.2	3355.8	25.2	3256.6	25.2	3245.9	1.69	-1.32	-1.64	
25.3	3630.0	25.2	3659.3	25.2	3576.1	25.2	3551.1	0.81	-1.48	-2.17	
25.3	3800.0	25.3	3870.7	25.2	3731.6	25.2	3759.4	1.86	-1.80	-1.07	

VDD=5.0V; HIRC=8MHz; 探针型号: TDS-67;											
标准	仪器	探铃	+1	探针	+ 2	探针 3		探针1	探针 2	探针 3	
NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	与标准(义器相对证	吴差 (%)	
25.3	52.0	25.6	51.3	25.7	51.7	25.6	51.1	-1.35	-0.58	-1.73	
25.3	61.6	25.6	61.5	25.6	62.0	25.6	61.0	-0.16	0.65	-0.97	
25.4	80.8	25.7	80.8	25.8	81.4	25.8	80.0	0.00	0.74	-0.99	
25.4	101.5	25.7	101.3	25.8	102.2	25.7	100.6	-0.20	0.69	-0.89	
25.4	121.0	25.7	121.4	25.8	122.2	25.7	120.4	0.33	0.99	-0.50	
25.4	158.8	25.6	159.8	25.7	161.0	25.7	158.5	0.63	1.39	-0.19	
25.4	211.0	25.7	211.1	25.8	212.7	25.7	209.7	0.05	0.81	-0.62	
25.4	269.0	25.6	270.0	25.7	272.1	25.6	268.7	0.37	1.15	-0.11	
25.5	302.0	25.7	304.4	25.8	306.6	25.7	302.3	0.79	1.52	0.10	
25.4	353.0	25.7	355.3	25.8	358.1	25.8	353.1	0.65	1.44	0.03	
25.3	403.0	25.6	407.5	25.7	410.5	25.7	405.4	1.12	1.86	0.60	
25.4	453.0	25.6	458.2	25.7	461.5	25.6	455.9	1.15	1.88	0.64	
25.5	502.0	25.7	510.3	25.8	514.3	25.8	507.7	1.65	2.45	1.14	
25.5	601.0	25.7	613.1	25.8	616.7	25.8	609.5	2.01	2.61	1.41	
25.4	702.0	25.6	717.6	25.7	721.8	25.7	714.1	2.22	2.82	1.72	
25.4	802.0	25.6	823.3	25.7	825.7	25.7	817.6	2.66	2.96	1.95	
25.5	904.0	25.7	931.1	25.9	933.9	25.8	926.4	3.00	3.31	2.48	
25.6	1008.0	25.8	1038.5	25.9	1042.9	25.8	1035.4	3.03	3.46	2.72	
25.6	1209.0	25.8	1256.1	25.9	1257.6	25.9	1249.6	3.90	4.02	3.36	
25.7	1406.0	25.8	1463.3	25.9	1468.7	25.9	1460.5	4.08	4.46	3.88	
25.6	1608.0	25.8	1683.6	25.9	1684.3	25.8	1677.6	4.70	4.75	4.33	
25.7	1821.0	26.0	1914.8	26.0	1910.0	26.0	1900.3	5.15	4.89	4.35	
25.5	2070.0	25.8	2129.9	26.0	2113.1	25.9	2117.2	2.89	2.08	2.28	
25.5	2220.0	25.7	2283.9	25.8	2266.8	25.7	2265.0	2.88	2.11	2.03	
25.4	2410.0	25.6	2483.6	25.7	2468.1	25.7	2482.4	3.05	2.41	3.00	
25.5	2630.0	25.7	2705.3	25.8	2704.1	25.7	2709.4	2.86	2.82	3.02	
25.4	2810.0	25.6	2902.2	25.8	2872.6	25.7	2896.5	3.28	2.23	3.08	
25.3	3010.0	25.5	3122.9	25.7	3090.1	25.6	3116.7	3.75	2.66	3.54	
25.3	3300.0	25.5	3442.9	25.7	3393.3	25.6	3442.2	4.33	2.83	4.31	
25.3	3630.0	25.5	3807.2	25.6	3742.8	25.6	3792.5	4.88	3.11	4.48	
25.3	3800.0	25.5	3987.2	25.6	3925.4	25.6	3994.9	4.93	3.30	5.13	

VDD=5.0V; HIRC=8MHz; 探针型号: TDS-37;											
标准	仪器	探铃	†1	探铃	+ 2	探针1	探针 2				
NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	NTC(°C)	TDS (us/cm)	与标准仪器相对误差 (%					
24.3	64.7	24.5	64.3	24.5	66.1	-0.62	2.16				
24.1	81.0	24.4	80.3	24.4	82.7	-0.86	2.10				
24.2	90.7	24.4	89.8	24.4	92.6	-0.99	2.09				
24.1	101.5	24.3	100.8	24.3	104.0	-0.69	2.46				
24.1	122.2	24.4	121.0	24.4	125.3	-0.98	2.54				
24.2	159.6	24.4	158.4	24.4	164.0	-0.75	2.76				
24.1	212.0	24.4	208.8	24.4	216.7	-1.51	2.22				
24.2	269.0	24.4	264.8	24.4	275.4	-1.56	2.38				
24.2	321.0	24.4	316.2	24.4	329.0	-1.50	2.49				
24.2	353.0	24.4	347.5	24.4	361.8	-1.56	2.49				
24.2	404.0	24.4	398.7	24.4	414.4	-1.31	2.57				
24.2	453.0	24.4	445.7	24.4	463.2	-1.61	2.25				
24.1	540.0	24.4	531.5	24.4	552.8	-1.57	2.37				
24.1	601.0	24.3	592.0	24.4	614.6	-1.50	2.26				
24.1	708.0	24.4	697.0	24.4	724.7	-1.55	2.36				
24.1	802.0	24.3	792.2	24.3	823.1	-1.22	2.63				
24.0	906.0	24.2	894.7	24.3	926.0	-1.25	2.21				
24.0	1010.0	24.2	999.6	24.2	1035.2	-1.03	2.50				
24.0	1209.0	24.2	1197.0	24.2	1235.9	-0.99	2.22				
24.0	1410.0	24.2	1395.4	24.2	1439.7	-1.04	2.11				
24.1	1628.0	24.2	1624.0	24.2	1665.6	-0.25	2.31				
24.1	1844.0	24.2	1844.5	24.2	1891.3	0.03	2.57				
24.0	2070.0	24.2	2017.2	24.3	2061.2	-2.55	-0.43				
24.0	2220.0	24.2	2175.3	24.3	2218.8	-2.01	-0.05				
24.0	2410.0	24.3	2347.5	24.3	2401.6	-2.59	-0.35				
24.1	2630.0	24.3	2564.8	24.3	2623.0	-2.48	-0.27				
24.1	2810.0	24.3	2753.8	24.3	2810.6	-2.00	0.02				
24.1	3010.0	24.3	2952.2	24.3	3011.1	-1.92	0.04				
24.2	3300.0	24.3	3251.2	24.4	3307.9	-1.48	0.24				
24.1	3630.0	24.4	3589.1	24.4	3657.6	-1.13	0.76				
24.1	3800.0	24.4	3761.4	24.4	3828.7	-1.02	0.76				

HOLTEK

Copyright[®] 2024 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

本文件出版时 HOLTEK 已针对所载信息为合理注意,但不保证信息准确无误。文中提到的信息仅 是提供作为参考,且可能被更新取代。HOLTEK 不担保任何明示、默示或法定的,包括但不限于 适合商品化、令人满意的质量、规格、特性、功能与特定用途、不侵害第三方权利等保证责任。 HOLTEK 就文中提到的信息及该信息之应用,不承担任何法律责任。此外,HOLTEK并不推荐 将 HOLTEK 的产品使用在会由于故障或其他原因而可能会对人身安全造成危害的地方。HOLTEK 特此声明,不授权将产品使用于救生、维生或安全关键零部件。在救生/维生或安全应用中使用 HOLTEK 产品的风险完全由买方承担,如因该等使用导致 HOLTEK 遭受损害、索赔、诉讼或产生 费用,买方同意出面进行辩护、赔偿并使 HOLTEK 免受损害。HOLTEK (及其授权方,如适用) 拥有本文件所提供信息(包括但不限于内容、数据、示例、材料、图形、商标)的知识产权,且 该信息受著作权法和其他知识产权法的保护。HOLTEK 在此并未明示或暗示授予任何知识产权。 HOLTEK 拥有不事先通知而修改本文件所载信息的权利。如欲取得最新的信息,请与我们联系。