

HT32F59741 产品规格书

增强型 24-Bit A/D Arm® Cortex®-M0+ 内核以及 1 MSPS 12-Bit ADC、24-Bit Delta Sigma ADC、DIV、USART、UART、SPI、I²C、GPTM、PWM、BFTM、SCI、CRC、RTC、WDT、LCD 和 USB2.0 FS 高达 64 KB Flash 和 8 KB SRAM 的 Holtek 32-Bit LCD 单片机

版本: V1.10 日期: 2022-04-12

www.holtek.com

目录

1	简介7
2	特性8
	内核8
	片上存储器8
	Flash 存储器控制器 – FMC
	复位控制单元 – RSTCU8
	时钟控制单元 - CKCU9
	电源控制单元 – PWRCU9
	外部中断 / 事件控制器 – EXTI9
	12-Bit 模数转换器 – ADC9
	24-Bit Delta Sigma A/D 转换器10
	输入/输出端口-GPIO10
	PWM 产生和捕捉定时器 – GPTM10
	脉冲宽度调制 – PWM10
	基本功能定时器 – BFTM11
	看门狗定时器 – WDT11
	实时时钟 – RTC11
	内部集成电路 – I ² C11
	串行外设接口 – SPI
	通用同步异步收发器 – USART12
	通用异步收发器 – UART12
	智能卡接口 - SCI13
	循环冗余校验 – CRC
	硬件除法器 – DIV
	液晶显示控制器 – LCD14
	通用串行总线设备控制器 – USB14
	调试支持14
	封装和工作温度14
3	概述
	单片机信息15
	方框图16
	存储器映射17
	时钟结构20
4	24-Bit A/D 转换器
	24-Bit A/D 转换器寄存器 22

寄存器初始值	22
内部电源	23
参考电压	23
电源及参考控制	24
电源控制寄存器	
振荡器	
振荡器控制寄存器	
内部信号增益控制放大器 – PGA	26
PGA 寄存器	
PGA 输入通道选择	
A/D 转换器操作	
A/D 转换器数据传输率的定义	
A/D 转换器时钟源	
A/D 转换器工作模式	
A/D 转换过程	31
A/D 转换步骤	31
A/D 转换功能	31
A/D 转换数据	33
A/D 转换数据转为电压值	34
温度传感器	34
有效位数 – ENOB	34
编程注意事项	34
外部接口通信	34
I ² C 接口操作	34
I ² C 地址和寄存器写 / 读	35
起始和停止操作	35
I ² C 总线数据传输	35
I ² C 总线起始信号	36
从机地址	36
I ² C 总线从机地址应答信号	36
I ² C 总线数据和应答信号	
I ² C 超时功能	36
引脚图	37
J	······································
电气特性	44
极限参数	44
建议直流特性	44
片上 LDO 稳压器特性	44
片上超低功耗 LDO 稳压器特性	
功耗	
复位和电源监控特性	
外部时钟特性	47

	部时钟特性48
PI	L 特性
US	SB PLL 特性49
存	储器特性49
I/C) 端口特性50
	-Bit A/D 转换器特性51
24	-Bit ADC 电气特性52
	有效位数 (ENOB)
内	部参考电压特性55
$V_{\rm I}$	_{DA} 监控特性55
\mathbf{G}	PTM / PWM 特性55
I ² (C 特性
SF	1 特性57
LO	CD 特性
US	SB 特性
7 封	装信息61
64	-pin LQFP (7mm×7mm) 外形尺寸62
80	-pin LQFP (10mm × 10mm) 外形尺寸

表列表

表 1. 特性及外设列表	15
表 2. 寄存器映射	18
表 3. 引脚分配	39
表 4. 引脚描述	41
表 5. 极限参数	44
表 6. 建议直流工作条件	44
表 7. LDO 特性	44
表 8. ULDO 特性	45
表 9. 功耗特性	45
表 10. V _{DD} 电源复位特性	46
表 11. LVD / BOD 特性	47
表 12. 外部高速时钟 (HSE) 特性	47
表 13. 外部低速时钟 (LSE) 特性	
表 14. 内部高速时钟 (HSI) 特性	48
表 15. 内部低速时钟 (LSI) 特性	49
表 16. PLL 特性	49
表 17. USB PLL 特性	
表 18. Flash 存储器特性	49
表 19. I/O 端口特性	
表 20. A/D 转换器特性	51
表 21. 24-bit A/D 转换器电气特性	52
表 22. 内部参考电压特性	55
表 23. V _{DDA} 监控特性	55
表 24. GPTM / PWM 特性	55
表 25. I ² C 特性	56
表 26. SPI 特性	57
表 27. LCD 特性	59
表 28. USB 直流电气特性	60
表 29. USB 交流电气特性	60

图列表

图 1. 方框	图1	6
图 2. 存储	皆器映射1	7
图 3. 时钟	P结构图2	0
图 4. 64-p	oin LQFP 引脚图	7
	oin LQFP 引脚图	
图 6. A/D	转换器采样网络模板5	1
图 7. I ² C F	时序图5	6
图 8. SPI	时序图 – SPI 主机模式5	8
图 9. SPI	时序图 – SPI 从机模式,CPHA = 15	8
图 10. US	${ m SB}$ 信号上升时间、下降时间和交叉点电压 (${ m V}_{ m CRS}$) 定义6	0

1 简介

该单片机是基于 Arm® Cortex®-M0+ 处理器内核的 32-bit 高性能低功耗单片机。Cortex®-M0+ 是 把嵌套向量中断控制器 (NVIC)、系统节拍定时器 (SysTick Timer) 和先进的调试支持紧紧结合在 一起的新一代处理器内核。

该单片机可工作在高达 60 MHz 的频率下,借助 Flash 加速器以获得较大的效能。它提供高达 64 KB 的嵌入式 Flash 存储器用作程序/数据存储,高达 8 KB 的嵌入式 SRAM 存储器用作系统操作和应用程序运用。此单片机具有多种外设,如 USB2.0 FS、硬件除法器 DIV、SPI、USART、UART、SCI、I²C、GPTM、PWM、BFTM、CRC-16/32、RTC、WDT、ADC、LCD 和 SW-DP (串行线调试端口)等。提供了几种省电模式,在唤醒延迟和功耗方面具有较优化的灵活性,这是低功耗应用方面的考虑要点。

该单片机包含一个 24-bit Delta Sigma A/D 转换器。其内建可编程增益放大器,专门为与模拟信号 差分接口应用而设计。

以上这些特性使该单片机可以广泛地适用于各种应用,如白色家电应用控制、电源监控、报警系统、消费类产品、手持式设备、数据记录应用、马达控制器等。

2 特性

内核

- 32-bit Arm® Cortex®-M0+ 处理器内核
- 高达 60 MHz 的工作频率
- 单周期乘法
- 集成嵌套向量中断控制器 (NVIC)
- 24-bit SysTick 定时器

Cortex®-M0+处理器是一种低门数,高效能的 32-bit 处理器内核,专为要求面积优化、低功耗处理器的单片机及深度嵌入式应用而设计。Cortex®-M0+处理器基于 ARMv6-M 架构,支持 Thumb®指令集。该处理器还提供了许多功能,如单周期 I/O 端口,硬件乘法器和低延迟中断响应时间。

片上存储器

- 64 KB 片上 Flash 存储器用于指令 / 数据和选项的存储
- 8 KB 片上 SRAM
- 支持多种启动模式

Arm® Cortex®-M0+ 处理器通过同一条外部接口对外部 AHB 外设进行访问及调试访问。处理器访问优先于调试访问。Cortex®-M0+ 的最大地址范围是 4 GB,因为它具有 32-bit 总线地址宽度。此外,预先定义的内存映射由 Cortex®-M0+ 处理器提供,以减少软件被不同的单片机供应商重复实施的复杂性。但有一些区域为 Arm® Cortex®-M0+ 系统外设所使用。更多信息请参考 Arm® Cortex®-M0+ 技术参考手册。概述章节中图 2 显示了该单片机的 32-bit 存储器映射,包括代码、SRAM、外设和其它预先定义的区域。

Flash 存储器控制器 - FMC

- 32-bit 字编程, 支持在线系统编程 (ISP) 和在线应用编程 (IAP)
- Flash 保护功能, 防止非法访问

Flash 存储器控制器 FMC 为嵌入式片上 Flash 存储器提供所有必要的功能和预抓取缓存器。由于 Flash 存储器访问速度比 CPU 慢, 故提供一个带有预抓取缓存器的宽访问接口来减少 CPU 指令执行延迟的等待时间。Flash 存储器还提供字编程 / 页擦除功能。

复位控制单元 - RSTCU

- 电源监控:
 - 上电复位 / 掉电复位 POR / PDR
 - 掉电检测器 BOD
 - 可编程低压检测-LVD

复位控制单元 RSTCU 有三种复位方式,分别是上电复位、系统复位和 APB 单元复位。上电复位,被称为冷复位,在上电时复位了整个系统。系统会复位处理器内核和除 SW-DP 控制器以外的外设 IP 元件。这些复位可以通过外部信号、内部事件和复位发生器触发。

时钟控制单元 - CKCU

- 外部 4~16 MHz 晶振
- 外部 32.768 kHz 晶振
- 在工作电压为 3.3 V, 工作温度为 25 °C 下, 内部 8 MHz RC 振荡器精度可调整至 ±2%
- 内部 32 kHz RC 振荡器
- 集成系统时钟 PLL 和 USB PLL
- 用作外设时钟源的独立的时钟分频器与门控位

时钟控制单元 CKCU 提供了一系列振荡器和时钟功能,包括内部高速 RC 振荡器 (HSI)、外部高速晶振 (HSE)、内部低速 RC 振荡器 (LSI)、外部低速晶振 (LSE)、锁相环 (PLL)、HSE 时钟监控、时钟预分频器、时钟倍频和 APB 时钟分频器与门电路。AHB、APB 和 Cortex $^{\otimes}$ -M0+ 的时钟来源于系统时钟 (CK_SYS),而系统时钟可以来自 HSI、HSE、LSI、LSE 或者系统 PLL。看门狗定时器和实时时钟 (RTC) 使用 LSI 或 LSE 作为它们的时钟源。

电源控制单元 - PWRCU

- 电源 V_{DD} 供电: 1.65 V~3.6 V
- 集成 1.5 V LDO 稳压器用作 CPU 内核、外设和存储器电源
- V_{DD} 供电给 RTC
- 电源域: V_{DD} 和 V_{CORE}
- 四种省电模式: 休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式

功耗被视为许多嵌入式系统应用中最重要的问题之一。因此,在这些单片机中,电源控制单元 PWRCU 提供多种省电模式如休眠模式、深度休眠模式 1、深度休眠模式 2、暂停模式。这些工作模式可以降低功耗,并允许应用在 CPU 运行时间、速度和功耗相互冲突的需求中达到较佳平衡。

外部中断/事件控制器 – EXTI

- 高达 16 个可配置触发源和触发类型的 EXTI 输入线
- 所有 GPIO 引脚都可选作 EXTI 触发源
- 触发源类型包括: 高电平、低电平、下降沿、上升沿或者双沿
- 每个 EXTI 输入线都可独立进行中断使能、唤醒使能和状态位设置
- 每个 EXTI 输入线都有软件中断触发模式
- 内建去干扰滤波器,用于封锁短脉冲

外部中断 / 事件控制器 EXTI 由 16 个可独立产生唤醒事件和中断请求的边沿检测器组成。每个 EXTI 输入线也可被单独屏蔽。

12-Bit 模数转换器 - ADC

- 12-bit SAR A/D 转换器内核
- 高达 1 Msps 转换速率
- 高达 10 个外部模拟输入通道

此单片机包含一个多通道 12-bit A/D 转换器, 其具有多路复用通道, 包括 10 个提供模拟信号的外部通道和 4 个可测量的内部通道。如果输入电压必须保持在一个特定的阈值窗口, 模拟看门狗功能将监控和检测这些信号。当输入电压高于或低于设定的阈值, 将产生中断。有三种转换模式用来把模拟信号转换成数字数据。A/D 转换器可工作在单次转换、连续和非连续转换模式。

內部参考电压 V_{REF} 为 AD 转换器和比较器提供了稳定的输出参考电压, V_{REF} 连接于 AD 转换器的 ADC IN15 输入通道。 V_{REF} 的精確电压由 Holtek 公司在生产测试中为每个部件单独测量。

24-Bit Delta Sigma A/D 转换器

- 内部可编程增益放大器
- 内部 I²C 接口用于外部通信
- 5 Hz~1.6 kHz ADC 输出数据传输率
- 内部温度传感器用于补偿

输入/输出端口 - GPIO

- 多达 53 个通用输入 / 输出口 (GPIO)
- 端口 A、B、C、D 映射为 16 个外部中断 EXTI
- 几乎所有 I/O 引脚都具有可编程输出驱动电流功能

单片机有多达 53 个通用 I/O 引脚, GPIO, 可以实现逻辑输入 / 输出功能。每个 GPIO 端口都有相关的控制和配置寄存器, 提高了灵活性并满足特定的应用需求。

在封装上 GPIO 引脚与其它复用功能引脚共用,以获得较大的灵活性。通过配置相应的寄存器, GPIO 口可以被用作复用功能的引脚。对单片机 GPIO 引脚的外部中断在外部中断控制单元, EXTI, 都有相关的控制和配置寄存器。

PWM 产生和捕捉定时器 - GPTM

- 16-bit 向上 / 向下自动重载计数器
- 每个定时器高达4个独立通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 输入捕捉功能
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式
- 内建可处理编码器接口信号的带两个输入口的正交解码器

通用定时器包括一个 16-bit 向上 / 向下计数器, 四个 16-bit 捕捉 / 比较寄存器 (CCR), 一个 16-bit 计数器重载寄存器 (CRR) 和多个控制 / 状态寄存器。它们可用于多种用途,包括通用计时、输入信号脉冲宽度测量、输出波形产生,如单脉冲波形产生或 PWM 输出。GPTM 内建可处理编码器接口信号的带两个输入口的正交解码器。

脉冲宽度调制 - PWM

- 16-bit 向上 / 向下自动重载计数器
- 每个定时器高达4个独立通道
- 16-bit 可编程预分频器对计数器时钟频率进行分频,分频率为1~65536
- 比较匹配输出
- PWM 波形产生功能,具有边沿对齐和中心对齐两种计数模式
- 单脉冲输出模式

脉冲宽度调制包括一个 16-bit 向上 / 向下计数器, 四个 16-bit 比较寄存器 (CR), 一个 16-bit 计数器重装载寄存器 (CRR) 和多个控制 / 状态寄存器。它可用于多种用途,包括通用计时、输出波形产生,如单脉冲波形产生或 PWM 输出。

基本功能定时器 - BFTM

- 32-bit 比较 / 匹配向上计数器 无输入 / 输出控制特性
- 单次模式 比较匹配条件产生后停止计数
- 重复模式 比较匹配条件产生后重新开始计数

基本功能定时器是一个简单的 32-bit 向上计数器,可用于测量时间间隔并产生一个单次或者重复中断。BFTM 工作在两种功能模式下,即重复模式或单次模式。在重复模式下,当一个比较匹配事件发生时,BFTM 重新开始计数。BFTM 也包含一个单次模式,在此模式下,当一个比较匹配事件发生时,计数器停止计数。

看门狗定时器 - WDT

- 带有 3-bit 预分频器的 12-bit 向下计数器
- ■可产生系统复位
- 可编程看门狗定时器窗口功能
- 寄存器写保护功能

看门狗定时器是一个硬件定时电路,可用于检测因软件陷入死锁导致的系统故障。它包括一个12-bit 向下计数器、一个预分频器、一个WDT增量值寄存器、WDT操作控制电路和WDT保护机制。如果软件在看门狗定时器溢出前没有重载计数器的值,计数器溢出时将产生复位。此外,当计数器值大于WDT增量值时,如果软件重新加载计数器,也会产生复位。这意味着计数器必须在有限的时间窗口内用特定方法重新加载。当处理器处于调试模式,看门狗定时器计数器可停止计数。该寄存器写保护功能被使能,来防止看门狗定时器配置的突然改变。

实时时钟 - RTC

- 带可编程预分频器的 24-bit 向上计数器
- 报警功能
- 中断和唤醒事件

实时时钟,RTC 电路包括 APB 接口、24-bit 向上计数器、一个控制寄存器、一个预分频器、一个比较寄存器和一个状态寄存器。除了APB 接口外,RTC 电路大多位于 V_{DD} 电源域。APB 接口位于 V_{CORE} 备份域。因此,当 V_{CORE} 区掉电即单片机进入暂停模式时隔离来自电源控制单元的 ISO 信号,是很有必要的。RTC 计数器被用作唤醒定时器当 MCU 在省电模式时,产生系统恢复或中断信号。

内部集成电路 - I2C

- 支持高达 1 MHz 频率的主从模式
- 提供仲裁功能和时钟同步功能
- 支持 7-bit 和 10-bit 寻址模式和广播呼叫寻址
- 可屏蔽地址功能支持多种从机寻址模式

 I^2C 模块是一个允许与外部 I^2C 接口通信的内部电路,而外部 I^2C 接口是一个符合工业标准并用于连接外部硬件的两线串行接口。这两个串行线被称为串行数据线 SDA 和串行时钟线 SCL。 I^2C 模块提供了三种数据传输速率:即标准模式下的 I^2C 机性水。以下的 I^2C 以下的 I^2

SDA 线是一条双向数据线,它连接整个 I²C 总线,在主机和从机之间用于数据的传输和接收。I²C 模块还具有仲裁检测功能和时钟同步,可防止多个主机试图同时传送数据到 I²C 总线的情况。

串行外设接口 - SPI

- 支持主从模式
- 主机模式频率高达 (f_{PCLK}/2) MHz, 从机模式频率高达 (f_{PCLK}/3) MHz
- FIFO 深度: 8级
- 多个主机和多个从机工作模式

串行外设接口 SPI 提供了一个 SPI 协议: 主从模式下数据发送和接收功能。SPI 接口使用 4 个引脚,其中有串行数据输入和输出线 MISO 和 MOSI, 时钟线 SCK 和从机选择线 SEL。SPI 作为主机使用,用 SEL 和 SCK 信号控制数据流来说明数据通信启动和数据采样率。要接收数据字节,数据流在特定的时钟边沿时被锁存且存储在数据寄存器或 RX FIFO。数据发送也是通过类似的方式,但以相反的顺序。模式故障检测功能使其适用于多主机应用。

通用同步异步收发器 - USART

- 同时支持异步和时钟同步串行通信模式
- 异步工作频率高达 (f_{PCLK}/16) MHz, 同步工作频率高达 (f_{PCLK}/8) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7, 8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位: 1或2个停止位产生
 - 位顺序: 最低位优先或最高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误
- 自动硬件流控制模式 RTS、CTS
- IrDA SIR 编码器和解码器
- 具有输出使能控制的 RS485 模式
- FIFO 深度:接收器和发送器均为8级

通用同步异步收发器 USART 提供了一个灵活的采用同步或异步传输的全双工数据交换。USART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。USART 外设功能支持四种类型的中断,包括线路状态中断、发送 FIFO 空中断、接收器阈值级别到达中断和超时中断。USART 模块包括一个发送 FIFO (TX_FIFO) 和一个接收 FIFO (RX_FIFO)。通过读取 USART 状态 & 中断标志的寄存器 USRSIFR,软件可以检测 USART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出、帧和暂停事件造成的错误状况。

通用异步收发器 – UART

- 异步串行通信工作频率高达 (f_{PCLK}/16) MHz
- 全双工通信
- 完全可编程串行接口通信特性包括:
 - 字长: 7、8 或 9-bit 字符
 - 校验位: 奇、偶或无奇偶校验位的产生和检测
 - 停止位: 1或2个停止位
 - 位顺序: 最低位优先或最高位优先传输
- 错误侦测: 奇偶校验、溢出和帧错误

通用异步收发器 UART 提供了一个灵活的采用异步传输的全双工数据交换。UART 用来转换并行和串行接口之间的数据,通常也被用作 RS232 标准通信。UART 外设功能支持线路状态中断。

通过读取 USART 状态 & 中断标志的寄存器 USRSIFR, 软件可以检测 UART 的错误状态。状态包括传输模式下的类型和状况以及因奇偶、溢出, 帧和暂停事件造成的错误状况。

智能卡接口 - SCI

- 支持 ISO 7816-3 标准
- 字符模式
- 一个发送缓冲器和一个接受缓冲器
- 11-bit ETU (基本时间单位) 计算器
- 9-bit 时间保护计数器
- 24-bit 通用等待时间计数器
- 奇偶产生和检测
- 发送和接收模式下检测到奇偶错误时自动进行字符重发

智能卡接口与 ISO 7816-3 标准兼容。该接口包括卡插入 / 移除检测、SCI 数据发送控制逻辑和数据缓冲器、内置定时器计数器和相关的控制逻辑电路来完成所有与智能卡有关的操作。智能卡接口作为一个智能卡读卡器,便于与外部智能卡通信。所有智能卡接口功能由一系列寄存器控制,包括控制和状态寄存器以及几个相关中断,这些中断使得单片机对 SCI 发送状态进行关注。

循环冗余校验 - CRC

- 支持 CRC16 多项式: 0x8005, X¹⁶ + X¹⁵ + X² + 1
- 支持 CCITT CRC16 多项式: 0x1021, X¹⁶ + X¹² + X⁵ + 1
- 支持 IEEE-802.3 CRC32 多项式: 0x04C11DB7, X³² + X²⁶ + X²³ + X²² + X¹⁶ + X¹² + X¹¹ + X¹⁰ + X⁸ + X⁷ + X⁵ + X⁴ + X² + X + 1
- 支持对数据和校验码进行1的补码、字节取反和位取反操作
- 支持字节、半字和字数据大小
- 可编程 CRC 初始种子值
- 对 8-bit 数据执行 CRC 计算需要 1 个 AHB 时钟周期,32-bit 数据需要 4 个 AHB 时钟周期循环冗余校验 (CRC) 计算单元是一种错误检测技术测试算法,用于验证数据传输或存储数据的正确性。CRC 计算将数据流或数据块作为输入,并生成一个 16-bit 或 32-bit 输出余数。通常情况下,数据流带 CRC 后缀码,且当被发送或存储时用作校验码。因此,被接收或重新储存的数据流是通过上述相同的生成多项式计算的。如果新的 CRC 码结果与先前计算的不匹配,这意味着数据流出错了。

硬件除法器 - DIV

- 32-bit 有符号 / 无符号除法器
- 运算需8个时钟周期,加载需1个时钟周期
- 除数为零错误标志

该除法器采用舍尾除法,需通过 START 控制位来触发除法器开始计算。8个时钟周期后当除法器计算结束,完成标志位将被置高,但若除数寄存器内数据为零,那么除数为零错误标志将被置位。

液晶显示控制器 - LCD

- 占空比类型: 静态、1/2、1/3、1/4、1/6 或 1/8
- 偏压电平: 静态、1/2、1/3 或 1/4
- 支持 R 型偏压
- 时钟源可以选择来自 LSI (32 kHz)、LSE (32.768 kHz),或来自 HSI、HSE 的时钟分频
- 内置 3 个 LCD 偏压参考电阻
- 双缓冲存储器
- 可通过软件选择充电泵电压
- 帧之间可编程的死区时间 高达 7/2 相位周期 (A 型波)和 7 相位周期 (B 型波)
- 可通过软件选择波形类型: A 型或 B 型
- LCD 帧中断
- 闪烁能力:可通过编程设置多达1、2、3、4、8或所有像素点闪烁

LCD 控制器是一种用于单色无源液晶显示的数字控制器 / 驱动器。其具有多达 8 个 COM 和 29 个 SEG,可驱动 116 (COM × SEG: 4 × 29) 或 200 (COM × SEG: 8 × 25) 个 LCD 像素。COM 和 SEG 的确切数量取决于设备的封装引脚。使能其内置的充电泵可为 LCD 提供高于系统电压的电压。

通用串行总线设备控制器 - USB

- 符合 USB 2.0 全速 (12Mbps) 规范
- 片上 USB 全速收发器
- 1 个控制端点 (EP0) 可用于控制转移
- 3 个单独的缓冲端点可用于批量和中断传输
- 4 对缓冲端点可用于批量、中断和同步传输
- 1024 字节 EP-SRAM 用于端点数据缓冲器

USB 设备控制器符合 USB 2.0 全速规范。有一个被称为端点 0 的控制端点和七个可配置端点。一个1024字节的 SRAM 被用作端点缓冲器。每个端点缓冲器大小可通过相应的寄存器编程来设置,这将为不同的应用提供了较大的灵活性。内置 USB 全速收发器有助于减少总的系统复杂度和成本。USB 功能块也包含恢复和暂停特性以满足低功耗的需求。

调试支持

- 串行线调试端口 SW-DP
- 4 个用于硬件断点或代码 / 文字补丁的比较器
- 2 个用于硬件数据观察点的比较器

封装和工作温度

- 64/80-pin LQFP 封装
- 工作温度: -40 °C~85 °C

3 概述

单片机信息

表 1. 特性及外设列表

3	外设 HT32F59741	
主 Flash (KB)		63
选项字节 Flash (KB)		1
SRAM (KB)		8
	GPTM	1
	PWM	2
定时器	BFTM	2
	WDT	1
	RTC	1
	USB	63 1 8 1 8 1 2 2 2 1 1 1 1 2 1 1 8×25,6×27,4×29 1 1 8×25,6×27,4×29 1 1 16 1 10 通道 1 4 通道 53 (Max.) 60 MHz (Max.) 1.65 V~3.6 V -40 °C~85 °C
	SPI	2
通信	USART	1
四日	UART	2
	I^2C	2
	SCI (ISO7816-3)	1
硬件除法器	I ² C 2 SCI (ISO7816-3) 1 1 EG) 8 × 25, 6 × 27, 4 × 29	
LCD (COM × SEG)		$8 \times 25, 6 \times 27, 4 \times 29$
CRC-16/32		1
EXTI		16
12-bit ADC		1
通道数		10 通道
24-bit ADC		1
通道数		4 通道
GPIO		53 (Max.)
CPU 频率		60 MHz (Max.)
工作电压		1.65 V ~ 3.6 V
工作温度		-40 °C ~ 85 °C
封装		64/80-pin LQFP

注:此处列出的功能 (24-bit ADC 除外)与 HT32F57341 设备兼容。有关详细的功能说明,请参阅 HT32F57341 用户手册。

方框图

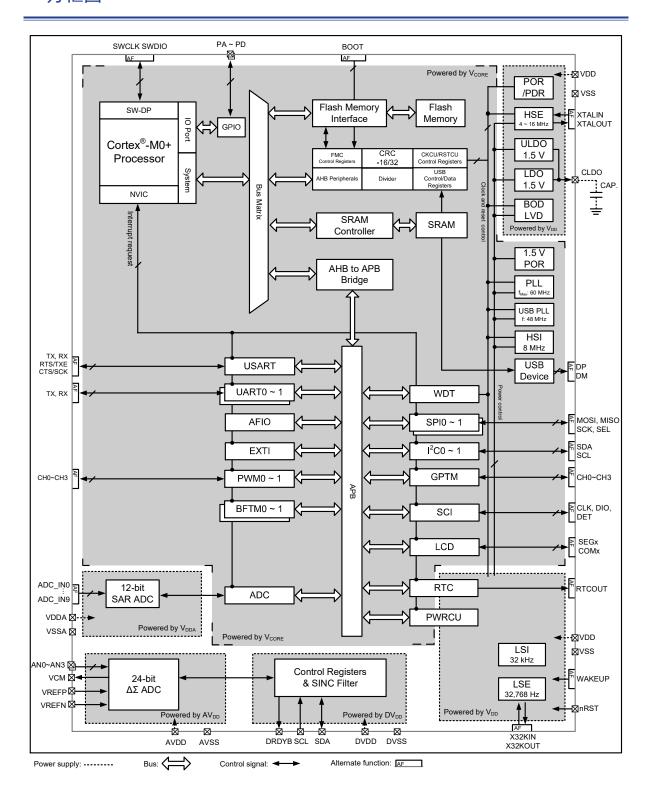


图 1. 方框图

存储器映射

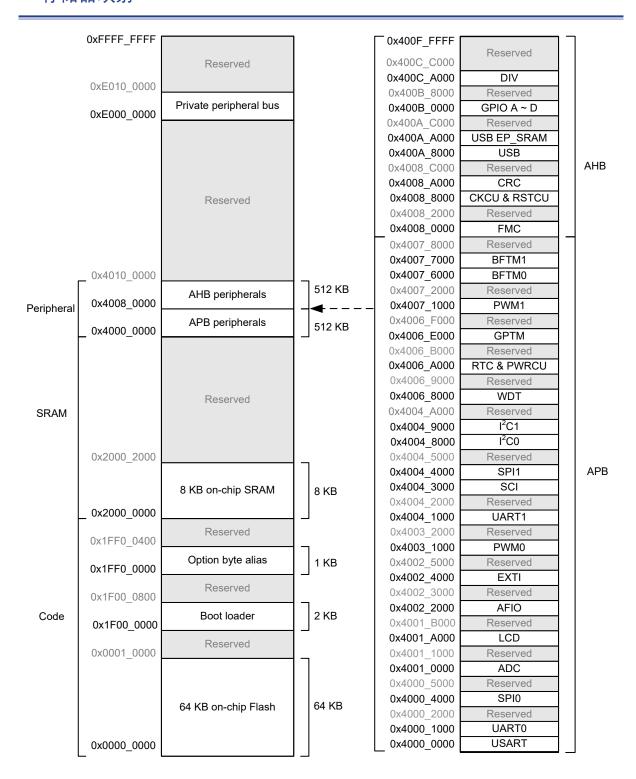
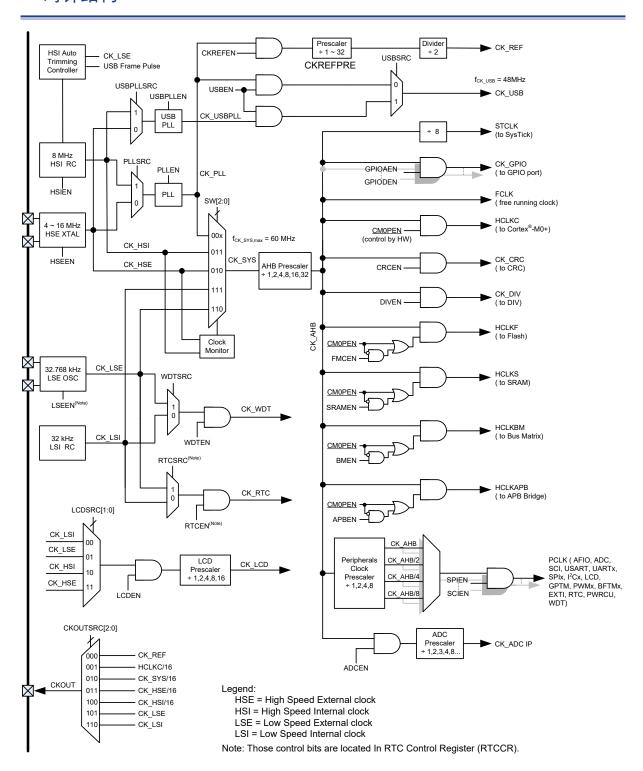


图 2. 存储器映射

表 2. 寄存器映射


起始地址	终止地址	外设	总线
0x4000_0000	0x4000_0FFF	USART	
0x4000_1000	0x4000_1FFF	UART0	
0x4000_2000	0x4000_3FFF	保留	
0x4000_4000	0x4000_4FFF	SPI0	
0x4000_5000	0x4000_FFFF	保留	
0x4001_0000	0x4001_0FFF	ADC	
0x4001_1000	0x4001_BFFF	保留	
0x4001_A000	0x4001_AFFF	LCD	
0x4001_B000	0x4002_1FFF	保留	
0x4002_2000	0x4002_2FFF	AFIO	
0x4002_3000	0x4002_3FFF	保留	
0x4002_4000	0x4002_4FFF	EXTI	
0x4002_5000	0x4003_0FFF	保留	
0x4003_1000	0x4003_1FFF	PWM0	A DD
0x4003_2000	0x4004_0FFF	保留	APB
0x4004_1000	0x4004_1FFF	UART1	
0x4004_2000	0x4004_2FFF	保留	
0x4004_3000	0x4004_3FFF	SCI	
0x4004_4000	0x4004_4FFF	SPI1	
0x4004_5000	0x4004_7FFF	保留	
0x4004_8000	0x4004_8FFF	I ² C0	
0x4004_9000	0x4004_9FFF	I ² C1	
0x4004_A000	0x4006_7FFF	保留	
0x4006_8000	0x4006_8FFF	WDT	
0x4006_9000	0x4006_9FFF	保留	
0x4006_A000	0x4006_AFFF	RTC & PWRCU	
0x4006_B000	0x4006_DFFF	保留	
0x4006_E000	0x4006_EFFF	GPTM	
0x4006_F000	0x4007_0FFF	保留	
0x4007_1000	0x4007_1FFF	PWM1	
0x4007_2000	0x4007_5FFF	保留	APB
0x4007_6000	0x4007_6FFF	BFTM0	Ard
0x4007_7000	0x4007_7FFF	BFTM1	
0x4007_8000	0x4007_FFFF	保留	

起始地址	终止地址	外设	总线
0x4008_0000	0x4008_1FFF	FMC	
0x4008_2000	0x4008_7FFF	保留	
0x4008_8000	0x4008_9FFF	CKCU & RSTCU	
0x4008_A000	0x4008_BFFF	CRC	
0x4008_C000	0x400A_7FFF	保留	
0x400A_8000	0x400A_9FFF	USB	
0x400A_A000	0x400A_BFFF	USB EP_SRAM	
0x400A_C000	0x400A_FFFF	保留	AHB
0x400B_0000	0x400B_1FFF	GPIOA	
0x400B_2000	0x400B_3FFF		
0x400B_4000	0x400B_5FFF	GPIOC	
0x400B_6000	0x400B_7FFF	GPIOD	
0x400B_8000	0x400C_9FFF	保留	
0x400C_A000	0x400C_BFFF	DIV	
0x400C_C000	0x400F_FFFF	保留	

时钟结构

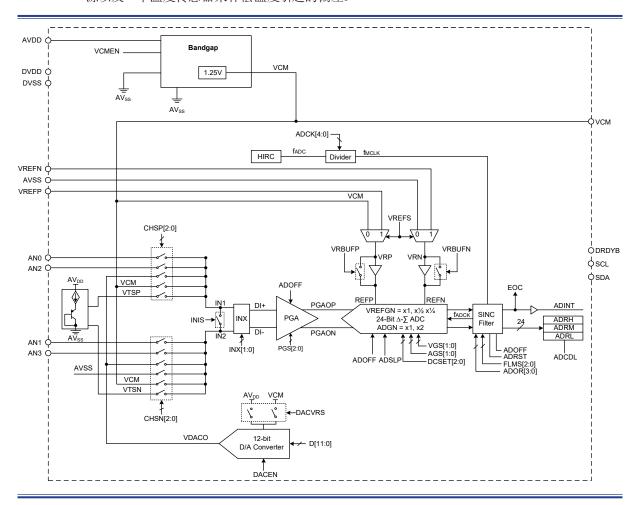


图 3. 时钟结构图

4 24-Bit A/D 转换器

该芯片包含一款多通道的 24-bit Delta Sigma 型高精度 A/D 转换器,它们可以直接接入外部模 拟信号(来自传感器或其它控制信号)并直接将这些信号转换成24位的数字量。除了核心A/D 转换器电路外,该ADC模块还包括内部可编程增益放大器PGA。ADC输入信号的放大增益由 PGA 增益控制、ADC 增益控制和 ADC 参考电压增益控制共同确定。设计者可以灵活选择较佳 增益组合为输入信号提供所需的放大增益以实现特定的应用。A/D 转换器输入通道由 4 个单端 A/D 输入通道或 2 组差分输入通道组成。A/D 转换器将数据输出到 SINC 滤波器, 然后会转换 成 24-bit 的数据,并将它们存储到 3 个数据寄存器。此外,该芯片还提供了一个内部稳压器和参考 源以及一个温度传感器来补偿温度引起的偏差。

24-Bit A/D 转换器寄存器

该 A/D 转换器可通过一系列内部寄存器进行设置及操作。设备命令和数据可通过其内部 I^2C 总 线写入 24-bit ADC 模块并从此模块中读取。该列表总结了所有内部寄存器,其操作详见功能描述中的相关章节。

寄存器初始值

下表即为上电复位后个别寄存器的内部值。

寄存器	上电复位值
PWRC	0000 0000
PGAC0	-000 0000
PGAC1	-000 000-
PGACS	00 0000
ADRL	xxxx xxxx
ADRM	xxxx xxxx
ADRH	XXXX XXXX
ADCR0	0010 0000
ADCR1	0000 000-
ADCS	0 0000
ADCTE	1110 0100
DAH	0000 0000
DAL	0000
DACC	00
SIMC0	0 00
SIMTOC	0000 0000
HIRCC	001

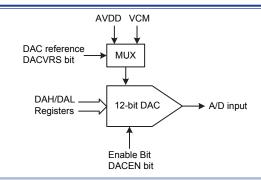
表格注释

项目	说明
*	热复位
-	未定义
u	不改变
X	未知

地址									
TETT	名称	7	6	5	4	3	2	1	0
00H	PWRC	VCMEN	D6	D5	D4	D3	D2	D1	D0
01H	PGAC0	_	VGS1	VGS0	AGS1	AGS0	PGS2	PGS1	PGS0
02H	PGAC1	_	INIS	INX1	INX0	DCSET2	DCSET1	DCSET0	_
03H	PGACS	_	_	CHSN2	CHSN1	CHSN0	CHSP2	CHSP1	CHSP0
04H	ADRL	D7	D6	D5	D4	D3	D2	D1	D0
05H	ADRM	D15	D14	D13	D12	D11	D10	D9	D8
06H	ADRH	D23	D22	D21	D20	D20	D19	D18	D17

地址	寄存器				乜	Ì			
	名称	7	6	5	4	3	2	1	0
07H	ADCR0	ADRST	ADSLP	ADOFF	ADOR3	ADOR2	ADOR1	ADOR0	VREFS
08H	ADCR1	FLMS2	FLMS1	FLMS0	VRBUFN	VRBUFP	ADCDL	EOC	_
09H	ADCS	_	_	_	ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
0AH	ADCTE	D7	D6	D5	D4	D3	D2	D1	D0
0BH	DAH	D11	D10	D9	D8	D7	D6	D5	D4
0CH	DAL		_	_	_	D3	D2	D1	D0
0DH	DACC	DACEN	DACVRS	_	_	_	_	_	_
0EH	SIMC0	SIMS				SIMDEB1	SIMDEB0	_	_
10H	SIMTOC	SIMTOEN	SIMTOF	SIMTOS5	SIMTOS4	SIMTOS3	SIMTOS2	SIMTOS1	SIMTOS0
11H	HIRCC	_	_	_	_	_	HIRCO	HIRCF	HIRCEN
12H	保留,不能被改变								

内部电源


该 ADC 模块包含一个 VCM 模块用于稳压电源。V_{CM} 还可以作为 ADC 模块的参考电压。VCM 功能由 VCMEN 位控制,可将其关闭以降低功耗。

参考电压

内部参考电压源 V_{CM} 可用作转换器参考。 V_{CM} 来源于 bandgap 参考发生器,从而提供温度稳定的参考,且输出电压固定在 1.25~V。VCM 功能由 VCMEN 位控制,可将其关闭以降低功耗。

转换器参考电压范围由两个外部参考引脚 VREFP 和 VREFN 提供。这两个引脚提供了完整的参考电压范围 AV_{SS} 到 AV_{DD} 。该外部提供的参考电压可通过寄存器 PGAC0中的 VREFGN 位衰减 0.5 或 0.25。

内部 DAC 也可作为额外的参考电压源。DAC 有两个参考电压用来定义最大值,由 AVDD 或 VCM 引脚供给。DAC 12-bit 值可通过两个数据寄存器 DAL 和 DAH 设置,并通过寄存器 DACC 中的 DACVRS 位选择。寄存器 DACC 中的 DACEN 位为 DAC 的总使能位。

● DAH 寄存器 - 0BH

Bit	7	6	5	4	3	2	1	0
Name	D11	D10	D9	D8	D7	D6	D5	D4
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7~0 **D11~D4**: DAC 输出控制码

● DAL 寄存器 - 0CH

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	D3	D2	D1	D0
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 未定义,读为"0"

Bit 3~0 **D3~D0**: DAC 输出控制码

注:对该寄存器写值只会写入到影子缓存器中,直到对 DAH 寄存器写值,才会将实际值写入 DAL 寄存器。

● DACC 寄存器 - 0DH

Bit	7	6	5	4	3	2	1	0
Name	DACEN	DACVRS	_	_	_	_	_	_
R/W	R/W	R/W	_	_	_	_	_	_
POR	0	0	_	_	_	_	_	_

Bit 7 DACEN: DAC 使能或除能控制位

0: 除能 1: 使能

Bit 6 DACVRS: DAC 参考电压选择位

0: DAC 参考电压来自 AVDD 1: DAC 参考电压来自 VCM

Bit 5~0 未定义,读为"0"

电源及参考控制

下表显示了电源和电压来源的整体控制。

寄存	字器	输出电压			
ADOFF	VCMEN	Bandgap	VCM		
1	0	Off	除能		
1	1	On	使能		
0	0	On	除能		
0	1	On	使能		

电源控制表

电源控制寄存器

• PWRC 寄存器 - 00H

Bit	7	6	5	4	3	2	1	0
Name	VCMEN	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 VCMEN: VCM 功能使能控制位

0: 除能 1: 使能

如果 VCM 除能,将不产生功耗, VCM 输出脚会处于浮空状态。

Bit 6~0 **D6~D0**: 特性优化位

010_1000B: ADCR1[FLMS2 \sim 0] = 000B ($f_{ADCK} = f_{MCLK}/30$) 010_1100B: ADCR1[FLMS2 \sim 0] = 010B ($f_{ADCK} = f_{MCLK}/12$)

其它值:保留位

振荡器

该 ADC 模块中包含一个完全内部振荡器, 可提供 4.9152 MHz 时钟频率。

振荡器控制寄存器

该模块的振荡器由一个控制寄存器控制,其用于内部振荡器。请注意,振荡器需要一个完整的 16 个时钟周期才能稳定。

● HIRCC 寄存器 - 11H

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	_	HIRCO	HIRCF	HIRCEN
R/W	_	_	_	_	_	R/W	R	R/W
POR	_	_	_	_	_	0	0	1

Bit 7~3 未定义,读为"0"

Bit 2 HIRCO: HIRC 时钟输出

该位必须保留为"0"

Bit 1 HIRCF: HIRC 振荡器稳定标志位

0: 未稳定 1: 稳定

若 HIRCEN 置高使能 HIRC 振荡器,则 HIRC 振荡器稳定需要 16 个系统时钟。

Bit 0 HIRCEN: HIRC 振荡器使能控制位

0: 除能 1: 使能

内部信号增益控制放大器 - PGA

内部可编程增益放大器用于转换前差分输入信号的放大。A/D 转换器的所有输入信号必须通过 PGA。输入信号的预处理可使一个较优的信号范围以较优分辨率获得转换值。

PGA 寄存器

通过一系列寄存器设置 PGA 增益以及选择输入源来实现 PGA 的控制。

● PGAC0 寄存器 - 01H

Bit	7	6	5	4	3	2	1	0
Name	_	VGS1	VGS0	AGS1	AGS0	PGS2	PGS1	PGS0
R/W	_	R/W						
POR	_	0	0	0	0	0	0	0

Bit 7 未定义,读为"0"

Bit 6~5 VGS1~VGS0: REFP/REFN 差分参考电压增益选择位

00: VREFGN = 1

01: VREFGN = 1/2

10: VREFGN = 1/4

11: 保留位

Bit 4~3 AGS1~AGS0: ADC PGAOP/PGAON 差分输入信号增益选择位

00: ADGN = 1

01: ADGN = 2 (用于 Gain = 128 = PGAGN × ADGN = 64 × 2)

10: 保留位

11: 保留位

Bit 2~0 PGS2~PGS0: PGA DI+/DI- 差分通道输入增益选择位

000: PGAGN = 1

001: PGAGN = 2

010: PGAGN = 4

011: PGAGN = 8 100: PGAGN = 16

101: PGAGN = 32

110: PGAGN = 64

111: 保留位

● PGAC1 寄存器 - 02H

Bit	7	6	5	4	3	2	1	0
Name	_	INIS	INX1	INX0	DCSET2	DCSET1	DCSET0	_
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	_
POR	—	0	0	0	0	0	0	_

Bit 7 未定义,读为"0"

Bit 6 INIS: 选择输入端 IN1/IN2 内部连接控制位

0: 不连接 1: 连接

Bit 5~4 INX1~INX0: 选择输入端 IN1/IN2 以及 PGA 差分输入端 DI+/DI- 连接控制位

Bit 3~1 **DCSET2~DCSET0**: 差分输入信号 PGAOP/PGAON 偏置选择位

000: DCSET = +0V

001: DCSET = $+0.25 \times \Delta VR$ I

010: DCSET = $+0.5 \times \Delta VR$ I

011: DCSET = $+0.75 \times \Delta VR I$

100: DCSET = +0V

101: DCSET = $-0.25 \times \Delta VR$ I

110: DCSET = $-0.5 \times \Delta VR$ I

111: DCSET = $-0.75 \times \Delta VR$ I

ΔVR I 为差分参考电压,可在输入信号的基础上选择一定的增益放大。

Bit 0 未定义,读为"0"

PGA 输入通道选择

除了转换器测量的外部模拟输入外,还有几个可以连接到转换器的内部模拟电压线路。类似温度 传感器的一系列不同来源,通常用于校准目的。

● PGACS 寄存器 - 03H

Bit	7	6	5	4	3	2	1	0
Name	_	_	CHSN2	CHSN1	CHSN0	CHSP2	CHSP1	CHSP0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
POR	_	_	0	0	0	0	0	0

Bit 7~6 未定义,读为"0"

Bit 5~3 CHSN2~CHSN0: PGA 反相输入端 IN2 选择位

000: AN1

001: AN3

010: 保留位

011: 保留位

100: VDACO

101: AVSS

110: VCM

111: VTSN-温度传感器负极输出

这些位用于选择反相端 IN2 输入信号。对于单端输入应用,若 IN2 被选作单端输入,则 IN1 端应选择 VCM 电压作为正相输入。为便于操作更合理,若选择 VTSN 信号作为反相端输入,建议选择 VTSP 为正相端输入。

Bit 2~0 CHSP2~CHSP0: 正相输入端 IN1 选择位

000: AN0

001: AN2

010: 保留位

011: 保留位

100: VDACO

101: 保留位

110: VCM

111: VTSP-温度传感器正极输出

这些位用于选择正相端 IN1 输入信号。对于单端输入应用,若 IN1 被选作单端输入,则 IN2 端应选择 VCM 电压作为反相输入。为便于操作更合理,若选择 VTSP 信号作为正相端输入,建议选择 VTSN 为反相端输入。

A/D 转换器操作

A/D 转换器接收了来自 PGA 输出的差分模拟信号,并通过 Delta Sigma 转换器将其转换成一个 24-bit 的数字值。A/D 转换器的整体操作由一系列控制寄存器控制。

● ADCR0 寄存器 - 07H

Bit	7	6	5	4	3	2	1	0
Name	ADRST	ADSLP	ADOFF	ADOR3	ADOR2	ADOR1	ADOR0	VREFS
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	1	0	0	0	0	0

Bit 7 ADRST: A/D 转换器软件复位控制位

0: 除能

1: 使能

此位可用来复位 A/D 转换器内部数字 SINC 滤波器。此位为低,A/D 转换正常工作,若将此位从低设为高,将复位内部数字 SINC 滤波器同时当前 A/D 转换的数据失效。再清零此位,将开始一次新的 A/D 转换。

Bit 6 ADSLP: A/D 转换器休眠模式控制位

0: 正常模式

1: 休眠模式

此位用于控制当通过设置 ADOFF 位为低开启 A/D 转换器后,A/D 转换器是否进入休眠模式。当 A/D 转换器开启后且此位为低时,A/D 转换器正常工作,反之若开启后此位为高则进入休眠模式。在休眠模式下,除 PGA 和内部 Bandgap 电路外的其它 A/D 转换电路都将关闭以减少功耗并缩短 VCM 启动稳定时间。

Bit 5 ADOFF: A/D 转换器模块电源开 / 关控制位

0: 电源开

1: 电源关

此位控制 A/D 内部功能的电源。该位被清零将使能 A/D 转换器。如果该位设为高将关闭 A/D 转换器以降低功耗。由于 A/D 转换器在不执行转换动作时都会产生一定的功耗,所以这在电源敏感的电池应用中需要多加注意。

无论 ADSLP 和 ADRST 位如何设置, ADOFF = 1 将关闭 A/D 转换器模块的电源。

Bit 4~1 **ADOR3~ADOR0**: A/D 转换器过采样率选择位

0000: 过采样率 OSR = 32768

0001: 过采样率 OSR = 16384

0010: 过采样率 OSR = 8192

0011: 过采样率 OSR = 4096

0100: 过采样率 OSR = 2048

0101: 过采样率 OSR = 1024

0110: 过采样率 OSR = 512

0111: 过采样率 OSR = 256 1000: 过采样率 OSR = 128

其它值:保留位

Bit 0 VREFS: A/D 转换器参考电压对选择位

0: 内部参考电压对 - V_{CM} & AV_{SS}

1: 外部参考电压对 - VREFP & VREFN

• ADCR1 寄存器 - 08H

Bit	7	6	5	4	3	2	1	0
Name	FLMS2	FLMS1	FLMS0	VRBUFN	VRBUFP	ADCDL	EOC	_
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
POR	0	0	0	0	0	0	0	_

Bit 7~5 FLMS2~FLMS0: A/D 转换器时钟分频比选择

000: $f_{ADCK} = f_{MCLK}/30$, N = 30010: $f_{ADCK} = f_{MCLK}/12$, N = 12

其它值:保留位

Bit 4 VRBUFN: A/D 转换器反相参考电压输入 (VRN) 缓存控制位

0: 除能输入缓存,使能旁路功能 1: 使能输入缓存,除能旁路功能

Bit 3 VRBUFP: A/D 转换器正相参考电压输入 (VRP) 缓存控制位

0: 除能输入缓存,使能旁路功能 1: 使能输入缓存,除能旁路功能

Bit 2 ADCDL: A/D 转换器数据锁存功能控制位

0: A/D 转换数据更新 1: A/D 转换数据不更新

若使能 A/D 转换数据锁存功能,最新转换的数据将被锁存,且不会更新后面的转换结果直到该功能被除能。虽然转换后的数据被锁存到数据寄存器,A/D 转换电路仍正常运行,但并不产生中断,EOC 也不改变。建议在读取 ADRL、ADRM 和 ADRH 寄存器中的转换数据之前先将该位置高。读取后该位会被清零以除能 A/D 数据锁存功能,以便下一笔转换结果的存储。这样可以防止在 A/D 转换过程中得到不需要的数据。

Bit 1 **EOC**: A/D 转换结束标志

0: A/D 转换中

1: A/D 转换结束

当 A/D 转换过程完成时,该标志将由硬件自动置高,但必须由应用程序软件清除。

Bit 0 未定义,读为"0"

A/D 转换器数据传输率的定义

Delta Sigma A/D 转换器的数据传输率可以通过下面的公式计算。

数据传输率 = f_{ADCK}/OSR

 $= (f_{MCLK}/N)/OSR$

 $= f_{MCLK}/(N \times OSR)$

f_{ADCK}: f_{MCLK}/N

 f_{MCLK} : f_{ADC} 或 $f_{ADC}/2/(ADCK+1)$, 通过 ADCK[4:0] 位选择。

N: 30 或 12, 通过 FLMS[2:0] 位选择。

OSR: 过采样率, 通过 ADOR[2:0] 位选择。

例如,若需要一个 10~Hz 的数据传输率,可以选择 A/D 时钟源 f_{MCLK} 为 4.9152~MHz,然后设置 FLMS[2:0] = 000b,即获得 A/D 转换时钟为 A/D 时钟源的 30~分频,最后设置 ADOR[3:0] = 0001b,选择过采样率为 16384。因此,可以得到一个数据传输率 = 4.9152~MHz / (30×16384) = 10~Hz。

需注意的是当数据传输率为 10 Hz, A/D 转换器对于频率为 50 Hz 或 60 Hz 交流电源有陷波抑制功能。

A/D 转换器时钟源

A/D 转换器的时钟源通常固定在 4.9152 MHz, 可来自 ADC 时钟 f_{ADC} 或其分频, 分频系数由 ADCS 寄存器中的 ADCK4 ~ ADCK0 位决定, 以获得固定 4.9152 MHz 的 ADC 时钟源。

• 内部 OSC = 4.9152 MHz, $f_{ADCK} = f_{MCLK}/30$

数据传输率 (Hz)	ADCK4~0	ADOR3~0	FLMS2~0
10	11111	0001	000

• 内部 OSC = 4.9152 MHz, $f_{ADCK} = f_{MCLK}/12$

数据传输率 (Hz)	ADCK4~0	ADOR3~0	FLMS2~0
25	11111	0001	010

• ADCS 寄存器 - 09H

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	ADCK4	ADCK3	ADCK2	ADCK1	ADCK0
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W
POR	_	_	_	0	0	0	0	0

Bit 7~5 未定义,读为"0"

Bit 4~0 **ADCK4~ADCK0**: A/D 转换器时钟源 f_{MCLK} 分频率选择位

 $00000 \sim 11110$: $f_{MCLK} = f_{ADC}/2/(ADCK[4:0] + 1)$

11111: $f_{MCLK} = f_{ADC}$

● ADCTE 寄存器 - 0AH

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	1	1	1	0	0	1	0	0

Bit 7~0 保留位, 需固定为 1110 0111B。

A/D 转换器工作模式

该 A/D 转换器提供了四种工作模式,正常模式、暂停模式、休眠模式和复位模式,分别由 ADCRO 寄存器中的 ADOFF、ADSLP 和 ADRST 位控制。下表列出了工作模式的选择。ADOFF 控制整体的开关状态,如果高功率将降低 A/D 转换器的功率。当 ADOFF 位为低时,转换器将被供电,ADSLP 位将决定转换器是否处于正常的运行模式或睡眠模式。

ADOFF	ADSLP	ADRST	工作模式	说明
1	X	X	暂停模式	Bandgap off,PGA off,ADC off,温度传感器 off, VRN/VRP 缓存器 off,SINC 滤波器 off
0	1	X	休眠模式	Bandgap on, PGA on, ADC off, 温度传感器 off, VRN/VRP 缓存器 off, SINC 滤波器 on
0	0	0	正常模式	Bandgap on,PGA on,ADC on,温度传感器 on/off, VRN/VRP 缓存器 on/off,SINC 滤波器 on
0	0	1	复位模式	Bandgap on,PGA on,ADC on,温度传感器 on/off, VRN/VRP 缓存器 on/off,SINC 滤波器复位

"x": 未知

A/D 工作模式概要

- 注: 1. 可以通过设置 VCMEN 位控制 VCM 发生器 on/off;
 - 2. 可以通过设置 CHSN[2:0] 或 CHSP[2:0] 位控制温度传感器 on/off;
 - 3. 可以通过相应设置 VRBUFN 或 VRBUFP 位控制 VRN 或 VRP 缓存 on/off。

A/D 转换过程

要打开 A/D 转换器,首先应将 ADOFF 和 ADSLP 位清零,除能 A/D 转换器的暂停和休眠模式,以确保 A/D 转换器可以通电。ADCR0 寄存器中的 ADRST 位,用于上电后打开和复位 A/D 转换器。当芯片设定此位从逻辑低到逻辑高,然后再到逻辑低,一个模数转换后的数据就会开始在 SINC 滤波器中进行转换。设置完成后,A/D 转换器可以开始工作。这三位用于控制内部模数转换器的开启动作。

ADCR1 寄存器中的 EOC 位用于表明模数转换过程的完成。在转换周期结束后,EOC 位会被芯片自动地置为"1"。A/D 转换数据将不断更新,如果 A/D 转换数据锁存功能使能,最新的转换数据会被锁存,这样后面再转换的数据不会被保存,直到该功能被关闭。

A/D 转换器参考电压来自内部电源电压引脚 VCM 和 AVSS 或外部参考源引脚 VREFP 和 VREFN,可通过 ADCR0 寄存器的 VREFS 位来选择。

A/D 转换步骤

- 步骤 1
 - 使能 VCM, 以提供电源给 PGA 和 ADC。
- 步骤 2
 - 通过 PGAC0 寄存器, 选择 PGA、ADC 和参考电压的增益。
- 步骤3
 - 通过 PGAC1 寄存器,选择 PGA 的输入引脚连接,VCM 电压电平和缓存器选项。
- 步骤 4
 - 通过 ADCS 寄存器中的 ADCK4~ADCK0 位, 选择所需的 A/D 转换时钟源 4.9152 MHz。
- 步骤 5
 - 通过 ADCR0 寄存器中的 ADOR[2:0] 位及 ADCR1 寄存器中的 FLMS[2:0] 位, 选择输出数据传输率。
- 步骤 6
 - 通过 PGACS 寄存器中的 CHSP2~CHSP0 和 CHSN2~CHSN0 位,选择连接至内部 PGA 的通道。
- 步骤 7
 - 通过 ADCRO 寄存器中的 ADOFF 和 ADSLP 位, 关闭暂停和休眠模式。
- - 通过置高 ADCRO 寄存器中的 ADRST 位来复位 A/D 转换器,清除该位来释放复位状态。
- 步骤 9

可以轮询 ADCR1 寄存器中的 EOC 位,检查模数转换过程是否完成。当此位成为逻辑高时,表示转换过程已经完成。转换完成后,可读取 A/D 数据寄存器 ADRL、ADRM 和 ADRH 获得转换后的值。

A/D 转换功能

由于被转换的值是 24 位,所以它的转换范围为 -8388608 ~ 8388607 (十进制)。转换后的数据以二进制补码的形式表示,最高位是转换数据的符号位。由于模拟输入最大值等于 VCM 或差分参考输入电压 (由 ADCR0 寄存器的 VREFS 位选择) 放大后的电压值 Δ VR_I,因此每一位可表示 Δ VR_I/8388608 的模拟输入值。

 $1 LSB = \Delta VR I/8388608$

通过下面的等式可估算 A/D 转换器输入电压值:

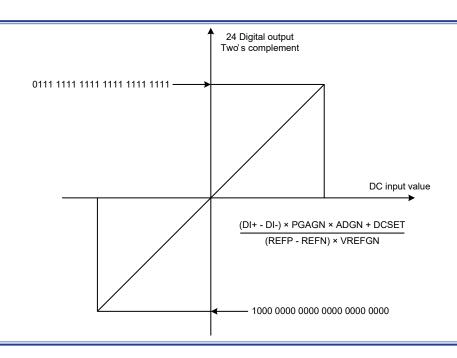
 $\Delta SI I = (PGAGN \times ADGN \times \Delta DI \pm) + DCSET$

 $\Delta VR \ I = VREFGN \times \Delta VR \pm$

ADC 转换数据 = (ΔSI I/ΔVR I) × K

其中, $K = 2^{23}$ 。

- 注: 1. PGAGN、ADGN 和 VREFGN 的值由 PGS、AGS、VGS 控制位决定。
 - 2. ΔSI_I: 经过放大和偏置校准后的差分输入信号
 - 3. PGAGN: PGA 增益
 - 4. ADGN: A/D 转换器增益
 - 5. VREFGN: 参考电压增益
 - 6. ΔDI±: 差分输入信号, 来自外部通道或内部信号
 - 7. DCSET: 偏置电压
 - 8. ΔVR±: 差分参考电压
 - 9. ΔVR I: 放大后的差分参考输入电压


由于 Delta Sigma A/D 转换器的数字系统设计, 其转换的最大值为 8388607, 最小值为 -8388608, 因此有一个中间值 0。A/D 转换数据公式说明了转换值的变化范围。

A/D 转换数据 (二进制补码,十六进制值)	十进制值
0x7FFFFF	8388607
0x800000	-8388608

A/D 转换数据范围

下图显示直流输入电压值和 A/D 转换数据 (以二进制补码形式表示)之间的关系。

A/D 转换数据

A/D 转换器的数据储存在寄存器 ADRL、ADRM 和 ADRH 中。A/D 转换数据与输入电压和 PGA 的设置有关。A/D 转换输出数据以二进制补码的形式表示,代码的长度为 24 位,最高位为符号位。最高位"0"表示输出为正数,最高位"1"表示输出为负数。最大值是 8388607,最小值是 -8388608。如果输入信号大于最大值,转换后的数据最大不超过 8388607;如果输入信号小于最小值,转换后的数据最小不低于 -8388608。

• ADRL 寄存器 - 04H

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R	R	R	R	R	R	R	R
POR	X	X	X	X	X	X	X	X

Bit 7~0 A/D 转换器数据寄存器 bit 7~bit 0

● ADRM 寄存器 - 05H

Bit	7	6	5	4	3	2	1	0
Name	D15	D14	D13	D12	D11	D10	D9	D8
R/W	R	R	R	R	R	R	R	R
POR	X	X	X	X	X	X	X	X

Bit 7~0 A/D 转换器数据寄存器 bit 15~bit 8

● ADRH 寄存器 - 06H

Bit	7	6	5	4	3	2	1	0
Name	D23	D22	D21	D20	D19	D18	D17	D16
R/W	R	R	R	R	R	R	R	R
POR	X	X	X	X	X	X	X	X

Bit 7~0 A/D 转换器数据寄存器 bit 23~bit 16

A/D 转换数据转为电压值

模拟电压值可通过下面的公式推导出电压值。

如果 MSB = 0 (转换数据为正数):

输入电压 = (转换数据 × LSB-DCSET) / (PGA × ADGN)

如果 MSB = 1 (转换数据为负数):

输入电压 = (转换数据的补码 × LSB-DCSET) / (PGA × ADGN)

注: 补码 = 反码 + 1

温度传感器

该 ADC 模块提供了一个内部温度传感器以补偿温度所产生的影响。PGA 输入通道通过选择连接到 VTSP或 VTSN, A/D 转换器可以获得温度信息, 然后针对结果对 A/D 转换数据做一些调整,以尽量减少温度的影响。

有效位数 - ENOB

虽然模数转换器是 24 位的, PGA 增益和数据传输率等各种因素仍会影响实际转换位的有效位数。

编程注意事项

在编程时,如果 A/D 转换器未使用,通过设置 ADCR0 寄存器中的 ADOFF 为高,关闭 A/D 内部 电路以减少电源功耗。此时,不考虑输入脚的模拟电压,内部 A/D 转换器电路不产生功耗。

需注意的是,将数据写入 DAC 寄存器 DAH 和 DAL 必须以特定的顺序进行。这是因为当数据写入到 DAL 寄存器时,数据只能写入影子缓冲寄存器。只有当数据写入到 DAH 寄存器时,阴影缓冲区中的数据才会被传输到 DAL 寄存器。因此,当将数据写入 DAC 寄存器时,首先将数据写入 DAL 寄存器,然后写入 DAH 寄存器。

外部接口通信

该 ADC 模块可通过内部 I²C 接口和外部硬件进行通信。最初是由飞利浦公司研制,是适用于同步串行数据传输的双线式低速串行接口。I²C 接口具有两线通信,非常简单的通信协议和在同一总线上和多个设备进行通信的能力的优点,使之在很多的应用场合中大受欢迎。

I2C 接口操作

 I^2C 串行接口是一个双线的接口,有一条串行数据线 SDA 和一条串行时钟线 SCL。由于可能有多个设备在同一条总线上相互连接,所以这些设备的输出都是开漏型输出。因此应在这些输出口上都加上拉电阻。应注意的是, I^2C 总线上的每个设备都没有选择线,但分别与唯一的地址一一对应,用于 I^2C 通信。

如果有两个设备通过双向的 I²C 总线进行通信,那么就存在一个主机和一个从机。主机和从机都可以用于传输和接收数据,但只有主机才可以控制总线动作,也只有主机才可以驱动时钟线 SCL。那些处于从机模式的设备,将只能对主机作出响应,要在 I²C 总线上传输数据只有两种方式,一是从机发送模式,二是从机接收模式

一些寄存器用来控制 I2C 总线接口的整体操作。

I2C 地址和寄存器写/读

I2C 地址选择

当该 ADC 模块仅作为从机工作时,由于可能有多个设备在同一条 I²C 总线上相互连接,因此它将需要一个特定的地址,以便于外部主机传输。该模块的 I²C 地址固定在 0xD0。

● SIMC0 寄存器 - 0EH

Bit	7	6	5	4	3	2	1	0
Name	SIMS	_	_	_	SIMDEB1	SIMDEB0	_	_
R/W	R/W	_	_	_	R/W	R/W	_	_
POR	0	_	_	_	0	0	_	_

Bit 7 SIMS:

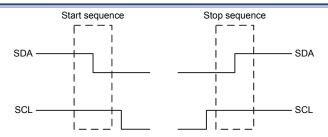
0: 正常工作

1: 导致不可预测的反应

对于正常的操作,该位必须保持为零。

Bit 6~4 未定义,读为"0"

Bit 3~2 SIMDEB1~SIMDEB0: I2C 去抖时间选择位


00: 无去抖时间

01: 2 个 ADC 去抖时间 10: 4 个 ADC 去抖时间 11: 4 个 ADC 去抖时间

Bit 1~0 未定义,读为"0"

起始和停止操作

正常情况下, SCL 线为低时, SDA 线才会发生变化。然而, 有两个例外情况, 即起始和停止操作, 即 SCL 线将被主机强制拉高, 而 SDA 线的状态将会改变。如图所示, 当 SCL 线高时, SDA 线高到低的转换表示开始操作, SDA 线低到高的转换表示停止操作。

I2C 总线数据传输

I²C 总线上会进行 8 位宽度的数据传输,这个数据传输顺序是最高有效位,即高位在前,最低有效位,即低位在后。当在 SDA 线上设置数据时, SCL 线将产生一个高脉冲来锁存数据。当 SCL 线为高时, SDA 线将不允许改变状态。若 8 位数据已传输完成,设备将发送第 9 位,即应答信号。因此,总共传输了 9 个位,接着 9 个 SCL 时钟脉冲传输每一笔 8 位数据或字节。当接收方发送回一个ACK低位时,表示接收方接收了 8 位数据,并准备接收下一个字节。如果发送回来的是 ACK 高位,表示接收方无法进一步接收到任何数据,并且主机应该发送一个停止序列。

I2C 寄存器写/读

写过程

Bit	7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		
Start	Ι)ev	ice	e A	dd	res	SS	Write	ACK]	Re	gis	ter	Αc	ldr	ess	S	ACK		R	leg	ist	er i	Da	ta		ACK	Stop

读过程

Bit	7 6 5 4 3 2 1	0		7 6	5 4	3	2 1	0			7	6	5	4	3	2	1	0		7	6	5	4	3	2	1	0		
Start	Device Address	Write .	ACK	Reg	gister	Ad	dress	;	ACK	Start]	Dev	ice	Ac	ldre	ess	R	Read	ACK		F	Reg	iste	er I	ata	a		ACK	Stop

I2C 总线起始信号

起始信号只能由连接 I²C 总线的主机产生,而不是由从机产生。总线上的所有从机都可以侦测到起始信号。起始信号是指在 SCL 为高电平时, SDA 线上发生从高到低的电平变化。

从机地址

I²C 总线上的所有从机都会侦测由主机发出的起始信号。发送起始信号后,紧接着主机会发送从机地址以选择要进行数据传输的从机。从机随后发出一个低电平应答信号(即第9位)。

I²C 总线从机地址应答信号

主机发送呼叫地址后,当 I^2C 总线上的任何从机内部地址与其匹配时,会发送一个应答信号。此应答信号会通知主机有从机已经接收到了呼叫地址。如果主机没有收到应答信号,则主机必须发送停止 (STOP) 信号以结束通信。

I2C 总线数据和应答信号

在从机确认接收到从地址后,会进行 8 位宽度的数据传输。这个数据传输顺序是的高位在前,低位在后。接收方在接收到 8 位数据后必须发出一个应答信号 ("0")以继续接收下一个数据。如果从机发送方没接收到来自主机接收方的应答信号,发送方将释放 SDA 线,此时主机方可发出 STOP 信号以释放 I^2C 总线。

I2C 超时功能

 I^2C 接口包括超时功能,由单个寄存器控制。该寄存器设置了ADC 时钟单元总体功能的使能 / 除能以及超时时间。通过读取 SIMTOF 位来决定 I^2C 总线是否超时。当 I^2C 总线超时时,该位将自动置高,但需要通过应用程序手动清除。

● SIMTOC 寄存器 - 10H

Bit	7	6	5	4	3	2	1	0
Name	SIMTOEN	SIMTOF	SIMTOS5	SIMTOS4	SIMTOS3	SIMTOS2	SIMTOS1	SIMTOS0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	0	0	0	0	0	0	0	0

Bit 7 **SIMTOEN:** I²C 超时控制位

0: 除能 1: 使能

Bit 6 SIMTOF: I²C 超时标志位

0: 未发生 1: 发生

该位置高时,超时功能发生,需由应用程序清除。

Bit 5~0 SIMTOS5~SIMTOS0: I²C 超时时间选择位

 I^2C 超时时钟源是 $f_{SUB}/32$,其中 $f_{SUB} = f_{ADC}/128$ 。

I²C 超时时间计算方法: ([SIMTOS5:SIMTOS0] + 1) × (32/f_{SUB})

5 引脚图

				HT32F59741 64 LQFP-A																		
			VSSA	VDDA	PB8	PB7	PB6	PC3	PC2	PC1	VSS_2	VDD_2	AN2	AN3	AN1	ANO	VCM	AVSS / VREFN		AF0 (Default)		
AF0 (Default))	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49			AF0 (Default)	AF1
		<i>-</i>	AP	AP	33V	33V	33V	33V	33V	33V	P33	P33	VDD 24	VDD 24	VDD 24	VDD 24	VDD 24	VDD 24				1
PA0	1	33V																	VDD 24	48	AVDD / VREFP	
PA1	2	33V																	VDD 24	47	DRDYB	
PA2	3	33V																	VDD 24	46	SDA	
PA3	4	33V					P33	3.3	V Digit	tal Pow	er Pad								VDD 24	45	SCL	
PA4	5	33V					AP	3.3	V Anal	log Pov	wer Pa	d							VDD 24	44	DVDD	
PA5	6	33V					P15	1.5	V Powe	er Pad									VDD 24	43	DVSS	
PA6	7	33V					33V	3.3	V Digit	al & Ar	nalog I/	O Pad							33V	42	PB1	
PA7	8	33V					33V]]	V Diait	al I/O F	nad.								33V	41	PB0	
PD4	9	33V					33V	3.3	v Digit	ai i/O r	rau								33V	40	PA14	
PD5	10	33V					VDD	VDE) Doma	ain Pac	i								33V	39	SWDIO	PA13
PC4	11	33V					USB	USE	B PHY	Pad									33V	38	SWCLK	PA12
PC5	12	33V					VDD 24	24 b	oit A/D	Power	Pad								33V	37	PA11	
PC8	13	33V						_											33V	36	PA10	
PC9	14	33V																	33V	35	PA9_ BOOT	
USBDM /PC6	15	USB																	33V	34	PA8	
USBDP /PC7	16	USB																	33V	33	PC13	
			P15	P33	P33	VDD 33V	P33	VDD 33V	VDD 33V	VDD 33V	33V	33V	33V	33V	33V	33V	33V	33V				
			17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32				
			CLDO	VDD_1	VSS_1	nRST	VLCD	X32KIN	х32КОПТ	RTCOUT	PD0	XTALIN	XTALOUT	PB15	PC0	PC10	PC11	PC12		AF0 (Default)	•	
								PB10	PB11	PB12		PB13	PB14							AF1		

图 4. 64-pin LQFP 引脚图

HT32F59741 80 LQFP-A VDD_3 AF0 (Default) VSS_3 PC15 PC14 PB6 РСЗ PC2 PC1 PB5 PB4 PB3 PB2 AN2 AN3 ₽ AF0 (Default) AF0 (Default) 78 75 73 70 69 68 67 66 65 64 63 0 VDD 24 33V 33V 33V 33V 33V PB7 DRDYB 1 33V 60 2 PB8 33V 59 SDA VDD 24 VDDA 3 58 SCL VDD 24 VSSA DVDD 4 57 3.3V Digital Power Pad VDD 24 5 DVSS PA0 33V 56 3.3V Analog Power Pad PA1 6 33V 33V 55 PD3 7 33V 33V 54 PD2 PA2 1.5 V Power Pad 8 33V 33V 53 PD1 PA3 3.3V Digital &Analog I/O Pad 9 33V 33V 52 PA4 PB1 PA5 10 33V 3.3V Digital I/O Pad 33V 51 PB0 11 PA6 33V 50 VSS_2 VDD Domain Pad PA7 12 33V USB PHY Pad 33V PD4 13 33V PA15 PD5 14 33V 33V 24 bit A/D Power Pad PC4 15 33V 33V 46 SWDIO PA13 PC5 16 33V 33V 45 SWCLK PA12 17 33V PC8 33V 44 PA11 18 PC9 33V 33V 43 PA10 USBDM/ 19 USB PA9_BOOT 33V 42 PC6 USBDP/ 41 20 USB 33V PA8 33V 30 31 32 36 37 21 22 23 24 25 26 27 28 29 33 34 35 38 39 40 XTALOUT X32KOUT VDD_1 AF0 (Default) VSS_1 X32KIN XTALIN CLDO VLCD PB15 PC10 PC12 PC13 PC11 nRST PD0 PC0 Z C Z.O Z C PB10 PB11 PB13 PB12 PB14

图 5. 80-pin LQFP 引脚图

表 3. 引脚分配

+	1 J±								复用	功能映射							
封	装	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP	80 LQFP	系统 默认	GPIO	ADC	N/A	GPTM	SPI	USART /UART	I ² C	SCI	N/A	N/A	N/A	N/A	PWM	LCD	系统 其他
1	5	PA0		ADC_IN0		GT_CH0	SPI1_ SCK	USR_RTS	I2C1_ SCL	SCI_CLK							VREF
2	6	PA1		ADC_IN1		GT_CH1	SPI1_ MOSI	USR_ CTS	I2C1_ SDA	SCI_DIO							
3	7	PA2		ADC_IN2		GT_CH2	SPII_ MISO	USR_TX									
4	8	PA3		ADC_IN3		GT_CH3	SPI1_SEL	USR_RX									
5	9	PA4		ADC_IN4		GT_CH0	SPI0_ SCK	USR_TX	I2C0_ SCL	SCI_CLK							
6	10	PA5		ADC_IN5		GT_CH1	SPI0_ MOSI	USR_RX	I2C0_ SDA	SCI_DIO							
7	11	PA6		ADC_IN6		GT_CH2	SPI0_ MISO	USR_RTS		SCI_DET							
8	12	PA7		ADC_IN7		GT_CH3	SPI0_SEL	USR_ CTS									
9	13	PD4		ADC_IN8				UR1_TX							PWM1_ CH0		
10	14	PD5		ADC_IN9				UR1_RX							PWM1_ CH1		
11	15	PC4				GT_CH0	SPI1_SEL	USR_TX	I2C1_ SCL							SEG11	
12	16	PC5				GT_CH1	SPI1_ SCK	USR_RX	I2C1_ SDA							SEG12	
13	17	PC8				GT_CH2	SPI1_ MOSI	UR1_TX								SEG13	
14	18	PC9				GT_CH3	SPI1_ MISO	UR1_RX								SEG14	
15	19	PC6						UR0_TX	I2C0_ SCL								
15	19	USBDM															
16	20	USBDP															
16	20	PC7						UR0_RX	I2C0_ SDA								
17	21	CLDO															
18	22	VDD_1															
19	23	VSS_1															
20	24	nRST															
21	25	VLCD															
22	26	X32KIN	PB10					USR_TX									
23	27	X32KOUT	PB11					USR_RX									
24	28	RTCOUT	PB12														WAKE
25	29	PD0							I2C0_ SDA							SEG15	
26 27	30 31	XTALIN XTALOUT	PB13 PB14														
28	32	PB15					SPI0_SEL	USR_TX	I2C1_ SCL						PWM0_ CH2	COM0	
29	33	PC0					SPI0_ SCK	USR_RX	I2C1_ SDA						PWM0_ CH3	COM1	
30	34	PC10				GT_CH0	SPI1_SEL									SEG25 /COM4	
31	38	PC11				GT_CH1	SPI1_ SCK									SEG26 /COM5	
32	39	PC12				GT_CH2	SPII_ MOSI	UR1_TX	I2C0_ SCL							SEG27 /COM6	
33	40	PC13				GT_CH3	SPII_ MISO	UR1_RX	I2C0_ SDA							SEG28 /COM7	
34	41	PA8						USR_TX							PWM1_ CH3	COM2	
35	42	PA9_ BOOT					SPI0_ MOSI								PWM1_ CH2		CKOL
36	43	PA10						USR_RX		SCI_DET					PWM0_ CH1	COM3	

									复用								
卦	装	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
64 LQFP	80 LQFP	系统 默认	GPIO	ADC	N/A	GPTM	SPI	USART /UART	I ² C	SCI	N/A	N/A	N/A	N/A	PWM	LCD	系统 其他
37	44	PA11					SPI0_ MISO									SEG0	
38	45	SWCLK	PA12														
39	46	SWDIO	PA13														
40	47	PA14					SPI1_SEL	USR_RTS	I2C1_ SCL	SCI_CLK					PWM0_ CH0	SEG1	
	48	PA15					SPI1_ SCK	USR_ CTS	I2C1_ SDA	SCI_DIO						SEG2	
41	51	PB0					SPI1_ MOSI	USR_TX	I2C0_ SCL						PWM0_ CH1	SEG3	
42	52	PB1					SPI1_ MISO	USR_RX	I2C0_ SDA						PWM1_ CH1	SEG4	
	53	PD1						USR_RTS		SCI_CLK						SEG16	
	54	PD2						USR_ CTS		SCI_DIO						SEG17	
	55	PD3								SCI_DET						SEG18	
43	56	DVSS															
44	57	DVDD															
45	58	SCL															
46	59	SDA															
47	60	DRDYB															
48	61	AVDD															
48	61	VREFP															
49	62	AVSS															
49	62	VREFN															
50	63	VCM															
51	64	AN0															
52	65	ANI															
53	66	AN3															
54	67	AN2															
	69	PB2					SPI0_SEL	UR0_TX							PWM0_ CH2	SEG5	CKIN
	70	PB3					SPI0_ SCK	UR0_RX								SEG6	
	71	PB4					SPI0_ MOSI	UR1_TX								SEG7	
	72	PB5					SPI0_ MISO	UR1_RX								SEG8	
	73	PC14							I2C0_ SCL							SEG9	
	74	PC15							I2C0_ SDA							SEG10	
	75	VDD_3															
	76	VSS_3															
55	49	VDD_2															
56	50	VSS_2															
57	77	PC1					SPI1_SEL	UR1_TX							PWM0_ CH0	SEG19	
58	78	PC2					SPI1_ SCK								PWM1_ CH0	SEG20	
59	79	PC3					SPI1_ MOSI	UR1_RX							PWM1_ CH2	SEG21	
60	80	PB6					SPI1_ MISO	UR0_TX		SCI_CLK						SEG22	
61	1	PB7							I2C1_ SCL	SCI_DET					PWM0_ CH3	SEG23	
62	2	PB8						UR0_RX	I2C1_ SDA	SCI_DIO					PWM1_ CH3	SEG24	
63	3	VDDA															
64	4	VSSA															

表 4. 引脚描述

引脚	编号	引脚	AIC TIL (1)	710.1±11.00	4A / L. 3E - L	描述
64LQFP	80LQFP	名称	类型(1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
1	5	PA0	AI/O	33V	4/8/12/16 mA	PA0
2	6	PA1	AI/O	33V	4/8/12/16 mA	PA1
3	7	PA2	AI/O	33V	4/8/12/16 mA	PA2
4	8	PA3	AI/O	33V	4/8/12/16 mA	PA3
5	9	PA4	AI/O	33V	4/8/12/16 mA	PA4
6	10	PA5	AI/O	33V	4/8/12/16 mA	PA5
7	11	PA6	AI/O	33V	4/8/12/16 mA	PA6
8	12	PA7	AI/O	33V	4/8/12/16 mA	PA7
9	13	PD4	AI/O	33V	4/8/12/16 mA	PD4
10	14	PD5	AI/O	33V	4/8/12/16 mA	PD5
11	15	PC4	I/O	33V	4/8/12/16 mA	PC4
12	16	PC5	I/O	33V	4/8/12/16 mA	PC5
13	17	PC8	I/O	33V	4/8/12/16 mA	PC8
14	18	PC9	I/O	33V	4/8/12/16 mA	PC9
15	19	PC6	I/O	33V	4/8/12/16 mA	PC6
15	19	USBDM	AI/O	_	_	符合通用串行总线标准的 USB 微分数据总线
16	20	USBDP	AI/O	_	_	符合通用串行总线标准的 USB 微分数据总线
16	20	PC7	I/O	33V	4/8/12/16 mA	PC7
17	21	CLDO	P	_	_	内核 1.5 V LDO 电源输出 必须连接一个 2.2 μF 电容, 尽量靠近 CLDO 与 VSS 1 引脚
18	22	VDD 1	P	_	_	数字 I/O 口电压
19	23	VSS_1	P	_	_	数字 I/O 口接地参考电压
20	24	nRST ⁽³⁾	I (V _{DD})	33V_PU	_	外部复位引脚和在暂停模式下外部唤醒引脚
21	25	VLCD	Р	_	_	LCD 电源电压 选择内部充电泵提供 LCD 电源电压时,必须 连接一个 2.2μF 电容,且尽量靠近 VLCD 引 脚与 VSS_1 引脚;选择外部 LCD 供电时,则 需连接一个普通旁路电容。
22	26	PB10 ⁽³⁾	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KIN
23	27	PB11 ⁽³⁾	AI/O (V _{DD})	33V	4/8/12/16 mA	X32KOUT
24	28	PB12 ⁽³⁾	I/O (V _{DD})	33V	4/8/12/16 mA	RTCOUT
25	29	PD0	I/O	33V	4/8/12/16 mA	PD0
26	30	PB13	AI/O	33V	4/8/12/16 mA	XTALIN
27	31	PB14	AI/O	33V	4/8/12/16 mA	XTALOUT
28	32	PB15	I/O	33V	4/8/12/16 mA	PB15
29	33	PC0	I/O	33V	4/8/12/16 mA	PC0
30	34	PC10	I/O	33V	4/8/12/16 mA	PC10

引脚	 编号	引脚	AL TIL (1)	T/O /+++ (2)	+A	描述
64LQFP	80LQFP	名称	类型(1)	I/O 结构 ⁽²⁾	输出驱动	默认功能 (AF0)
31	38	PC11	I/O	33V	4/8/12/16 mA	PC11
32	39	PC12	I/O	33V	4/8/12/16 mA	PC12
33	40	PC13	I/O	33V	4/8/12/16 mA	PC13
34	41	PA8	I/O	33V	4/8/12/16 mA	PA8
35	42	PA9	I/O	33V_PU	4/8/12/16 mA	PA9_BOOT
36	43	PA10	I/O	33V	4/8/12/16 mA	PA10
37	44	PA11	I/O	33V	4/8/12/16 mA	PA11
38	45	PA12	I/O	33V_PU	4/8/12/16 mA	SWCLK
39	46	PA13	I/O	33V_PU	4/8/12/16 mA	SWDIO
40	47	PA14	I/O	33V	4/8/12/16 mA	PA14
	48	PA15	I/O	33V	4/8/12/16 mA	PA15
41	51	PB0	I/O	33V	4/8/12/16 mA	PB0
42	52	PB1	I/O	33V	4/8/12/16 mA	PB1
	53	PD1	I/O	33V	4/8/12/16 mA	PD1
	54	PD2	I/O	33V	4/8/12/16 mA	PD2
	55	PD3	I/O	33V	4/8/12/16 mA	PD3
43	56	DVSS	P	_	_	24-bit ADC 接地参考电压
44	57	DVDD	P	_	_	24-bit ADC 数字电源电压
45	58	SCL	I	_	_	24-bit ADC I ² C 时钟线
46	59	SDA	I/O	_	_	24-bit ADC I ² C 数据线
47	60	DRDYB	О	_	_	24-bit ADC 数据就绪指示。变为低时指示有 效数据
48	61	AVDD	P	_	_	24-bit ADC 模拟正电源电压
48	61	VREFP	AI	_	_	24-bit ADC 正极参考输入电压
49	62	VREFN	AI	_	_	24-bit ADC 负极参考输入电压
49	62	AVSS	P	_	_	24-bit ADC 模拟负电源电压
50	63	VCM	AO	_	_	24-bit ADC 内部共模电压输出
51	64	AN0	AI	_	_	24-bit ADC 输入通道 0
52	65	AN1	AI	_	_	24-bit ADC 输入通道 1
53	66	AN3	AI	_	_	24-bit ADC 输入通道 3
54	67	AN2	AI	_	_	24-bit ADC 输入通道 2
	69	PB2	I/O	33V	4/8/12/16 mA	PD1
	70	PB3	I/O	33V	4/8/12/16 mA	PD2
	71	PB4	I/O	33V	4/8/12/16 mA	PD3
	72	PB5	I/O	33V	4/8/12/16 mA	
	73	PC14	I/O	33V	4/8/12/16 mA	
	74	PC15	I/O	33V	4/8/12/16 mA	
	75	VDD_3	P	_	_	数字 I/O 口电压
	76	VSS_3	P	_	_	数字 I/O 口接地参考电压
55	49	VDD_2	P	_	_	数字 I/O 口电压

引脚	编号	引脚	类型(1)	I/O 结构 ⁽²⁾	输出驱动	描述
64LQFP	80LQFP	名称	关型 "	I/U 编构 "	制山地列	默认功能 (AF0)
56	50	VSS_2	P			数字 I/O 口接地参考电压
57	77	PC1	I/O	33V	4/8/12/16 mA	PC1
58	78	PC2	I/O	33V	4/8/12/16 mA	PC2
59	79	PC3	I/O	33V	4/8/12/16 mA	PC3
60	80	PB6	I/O	33V	4/8/12/16 mA	PB6
61	1	PB7	I/O	33V	4/8/12/16 mA	PB7
62	2	PB8	I/O	33V	4/8/12/16 mA	PB8
63	3	VDDA	P	_	_	12-bit ADC 模拟电压
64	4	VSSA	P	_	_	12-bit ADC 接地参考电压

- 注: $1.I = 输入, O = 输出, A = 模拟端口, P = 电源, V_{DD} = V_{DD} 电源。$
 - 2. 33V = 3.3 V 工作 I/O 型, PU = 上拉。
 - 3. 这些引脚位于 V_{DD} 电源域。

6 电气特性

极限参数

下面的表格说明单片机的极限参数。这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

表 5. 极限参数

符号	参数	最小值	最大值	单位
V_{DD}	外部主电源供应电压	V _{SS} - 0.3	$V_{SS} + 3.6$	V
V_{DDA}	外部模拟电源供应电压	V_{SSA} - 0.3	$V_{SSA} + 3.6$	V
V_{LCD}	LCD 电源电压	V_{SSA} - 0.3	$V_{SSA} + 3.6$	V
V _{IN}	I/O 口输入电压	V _{SS} - 0.3	$V_{DD} + 0.3$	V
$\mathrm{DV}_{\mathrm{DD}}$	24-bit A/D 转换器电源电压	DV _{SS} - 0.3	$DV_{SS} + 6.0$	V
T_A	工作温度的范围	-40	85	°C
T_{STG}	储存温度的范围	-60	150	°C
T_{J}	最大结温	_	125	°C
P_{D}	总功耗	_	500	mW
V_{ESD}	静电放电电压 – 人体模式	-4000	+4000	V

建议直流特性

表 6. 建议直流工作条件

T_A = 25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压	_	1.65	3.3	3.6	V
V_{DDA}	模拟工作电压	_	2.5	3.3	3.6	V
V_{LCD}	LCD 工作电压	_	2.2	3.3	3.6	V

片上 LDO 稳压器特性

表 7. LDO 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{LDO}	内部稳压器输出电压	调整后, $V_{DD} \ge 1.65 \text{ V}$ 稳压器输入 @ $I_{LDO} = 10 \text{ mA}$ 且电压变化为 $\pm 5 \%$	1.425	1.5	1.57	V
ī	输出电流	V _{DD} = 2.0 V ~ 3.6 V 稳压器输入 @ V _{LDO} = 1.5 V		30	35	A
I_{LDO}	湘	V _{DD} = 1.65 V ~ 2.0 V 稳压器输入@V _{LDO} = 1.5 V		20	25	mA
C_{LDO}	内核供电的外部滤波电 容值	电容值取决于内核电源的功耗	1	2.2	_	μF

片上超低功耗 LDO 稳压器特性

表 8. ULDO 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{ULDO}	内部稳压器输出电压	调整后, $V_{DD} \ge 1.65 \text{ V}$ 稳压器输入 @ $I_{ULDO} = 2 \text{ mA}$ 且电压变化为 $\pm 5 \%$	1.425	1.5	1.57	V
I_{ULDO}	输出电流	V _{DD} = 1.65 V ~ 3.6 V 稳压器输入@ V _{ULDO} = 1.5 V	_	2	5	mA
C_{LDO}	内核供电的外部滤波电 容值	电容值取决于内核电源的功耗	1	2.2	_	μF

功耗

表 9. 功耗特性

T_A=25℃,除非另有规定

<i>55</i> 🗆	分 米5	C	₽ /#		曲型/生	最大值	1 @ T _A	* / *
符号	参数	f _{HCLK}	条件		典型值	25 °C	85 °C	单位
			$V_{DD} = V_{LCD} = 3.3 \text{ V},$	所有外设使能	14.9	17.0	_	
		60 MHz	HSI = 8 MHz, PLL= 60 MHz	所有外设除能	6.9	7.9	_	
			$V_{DD} = V_{LCD} = 3.3 \text{ V},$	所有外设使能	11.9	13.6	_	
		40 MHz	HSI = 8 MHz, PLL = 40 MHz	所有外设除能	6.5	7.4	_	mA
	- 二字档子		$V_{DD} = V_{LCD} = 3.3 \text{ V},$	所有外设使能	6.2	7.1	_	
	运行模式	20 MHz	HSI = 8 MHz, PLL = 40 MHz	所有外设除能	3.2	3.6	_	μΑ
		8 MHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$	所有外设使能	3.2	3.6	_	
		6 IVITIZ	HSI = 8 MHz, $PLL = off$	所有外设除能	1.4	1.6	_	
		32 kHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$ HSI = 32 kHz, LDO off,	所有外设使能	13.2	17.5	_	
		32 KHZ	ULDO on	所有外设除能	9.2	12.2	_	
I_{DD}		60 MHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$ HSI = 8 MHz,	所有外设使能	10.3	11.8	_	
		60 MHz	PLL = 60 MHz, MCU core sleep	所有外设除能	1.5	1.7	_	
		40 MHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$ HSI = 8 MHz,	所有外设使能	7.1	8.1	_	
	休眠模式	40 MHZ	PLL = 40 MHz, MCU core sleep	所有外设除能	1.2	1.3	_	
	/ PRN/ 关入	20 MHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$ HSI = 8 MHz,	所有外设使能	4.2	4.8	_	mA
		20 MHZ	PLL = 40 MHz, MCU core sleep	所有外设除能	0.9	1.0	_	
		8 MHz	$V_{DD} = V_{LCD} = 3.3 \text{ V},$ HSI = 8 MHz,	所有外设使能	2.4	2.7	_	
			PLL = off, MCU core sleep	所有外设除能	0.4	0.5	_	

<i>የተ</i> 🗆	\$ \#h	c	₽ //H	曲 刑 /古	最大值	1 @ T _A	单位
符号	参数	f _{HCLK}		典型值	25 °C	85 °C	半江
	深度休眠 模式 1	_	$V_{DD} = V_{LCD} = 3.3 V$,所有时钟关闭 (HSE/HSI/LSE),LDO off,ULDO off,LSE off,LSI on,RTC on	5.0	7.6	_	
			$V_{DD} = V_{LCD} = 3.3 V$,所有时钟关闭 (HSE/HSI/LSE),LDO off,ULDO on,LSE off,LSI on,RTC on,LCD off	5.0	7.6	_	
I_{DD}	深度休眠 模式 2	_	$V_{DD} = V_{LCD} = 3.3 V$,所有时钟关闭 (HSE/HSI/LSE),LDO off,ULDO on,LSE off,LSI on,RTC off,LCD on ⁽⁵⁾ ,外部 $V_{LCD} = V_{DD}$	7.5	_	_	μΑ
			V _{DD} = 2.7 V, V _{LCD} = 3.25 V, 所有时钟关闭 (HSE/HSI/LSE), LDO off, ULDO on, LSE off, LSI on, RTC off, LCD on ⁽⁶⁾ , 内部充电泵提供 V _{LCD}	55.3	_	_	
	暂停模式		$V_{\text{DD}} = V_{\text{LCD}} = 3.3 \text{V}, \; \text{LDO} \; \text{All ULDO off}, \; \text{LSE off, LSI on, RTC on}$	1.40	2.15	_	
	自厅保入	. —	$V_{\text{DD}} = V_{\text{LCD}} = 3.3 \; \text{V}, \; \; \text{LDO} \; \overline{\text{41}} \; \text{ULDO} \; \text{off}, \\ \text{LSE off,} \; \; \text{LSI on,} \; \; \text{RTC off}$	1.30	1.95	_	

- 注: 1. HSE 是外部高速振荡器,而 HSI 是内部 8MHz 高速振荡器。
 - 2. LSE 是 32.768 kHz 外部低速振荡器, 而 LSI 是内部 32 kHz 低速振荡器。
 - 3. RTC 表示实时时钟。
 - 4. 代码 = while (1) {208 NOP} 在 Flash 中执行。
 - 5. LCD 使能,外部 VLCD,1/4 占空比,1/3 偏压,分频比 = 64,高驱动功能除能,所有像素点激活,无 LCD 连接。
 - 6. LCD 使能,内部 VLCD,1/4 占空比,1/3 偏压,分频比 = 64,高驱动功能除能,所有像素点激活,无 LCD 连接。

复位和电源监控特性

表 10. V_{DD} 电源复位特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压		0.6	_	3.6	V
V_{POR}	上电复位阈值(V _{DD} 电压上升)	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	1.4	1.55	1.65	V
$V_{ ext{PDR}}$	掉电复位阈值(V _{DD} 电压下降)		1.27	1.45	1.57	V
V _{PORHYST}	POR 迟滞	_	_	100	_	mV
$t_{\rm POR}$	复位延迟时间	$V_{DD} = 3.3 \text{ V}$	_	0.1	0.2	ms

- 注: 1. 数据仅为特性描述结果,未在生产中测试。
 - 2. 表格中数据设计时可保证, 未在生产中测试。
 - 3. 若 LDO 开启,则 V_{DD} POR 处于无效状态。当 V_{DD} POR 处于有效状态时,LDO 将被关闭。

表 11. LVD / BOD 特性

T_A=25 ℃,除非另有规定

符号	参数	条件		最小值	典型值	最大值	单位
V 7	转再整测由压	丁口油軟 口	V _{DD} 下降沿	1.62	1.68	1.74	V
V_{BOD}	掉电检测电压	工厂调整后	V _{DD} 下降沿	1.68	1.74	1.8	V
V_{BODHYST}	BOD 迟滞	$V_{DD} = 2.0 \text{ V}$	_	_	60	_	mV
	低压检测电压	V _{DD} 下降沿	LVDS = 000	1.67	1.75	1.83	V
			LVDS = 001	1.87	1.95	2.03	V
			LVDS = 010	2.07	2.15	2.23	V
1 7			LVDS = 011	2.27	2.35	2.43	V
V_{LVD}			LVDS = 100	2.47	2.55	2.63	V
			LVDS = 101	2.67	2.75	2.83	V
			LVDS = 110	2.87	2.95	3.03	V
			LVDS = 111	3.07	3.15	3.23	V
V _{LVDHTST}	LVD 迟滞	$V_{DD} = 3.3 \text{ V}$	_	_	100	_	mV
$t_{ m suLVD}$	LVD 建立时间	$V_{DD} = 3.3 \text{ V}$	_	_	_	5	μs
t_{atLVD}	LVD有效延迟时间	$V_{DD} = 3.3 \text{ V}$		_	_	_	ms
I_{DDLVD}	工作电流 (3)	$V_{DD} = 3.3 \text{ V}$	_	_	5	15	μΑ

- 注: 1. 数据仅为特性描述结果, 未在生产中测试。
 - 2. 表格中数据设计时可保证,未在生产中测试。
 - 3. 不包括 Bandgap 电流。
 - 4. LVDS 位于 PWRCU LVDCSR 寄存器中。

外部时钟特性

表 12. 外部高速时钟 (HSE) 特性

T_A = 25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	1.65	_	3.6	V
$f_{\text{CK_HSE}}$	外部高速振荡器频率 (HSE)	_	4	_	16	MHz
C_L	负载电容	$V_{DD} = 3.3 \text{ V}, R_{ESR} = 100 \Omega$ @ 16 MHz		_	22	pF
R _{FHSE}	XTALIN 和 XTALOUT 引 脚间的内部反馈电阻	_	_	1	_	МΩ
R _{ESR}	等效串联电阻	$V_{DD} = 3.3V$, $C_L = 12 \text{ pF } @$ 16 MHz , $HSEDR = 0$	160	Ω		
NESR	寺效中狀屯阻	$V_{DD} = 2.5 \text{ V}, C_L = 12 \text{ pF } @ 16 \text{ MHz}, HSEDR = 1$			160	32
D_{HSE}	HSE 振荡器占空比	_	40	_	60	%
I_{DDHSE}	HSE 振荡器工作电流	$V_{DD} = 3.3 \text{ V} @ 16 \text{ MHz}$	_	TBD	_	mA
I _{PWDHSE}	HSE 振荡器暂停电流	$V_{DD} = 3.3 \text{ V}$	_	_	0.01	μА
t_{SUHSE}	HSE 振荡器启动时间	$V_{DD} = 3.3 \text{ V}$	_	_	4	ms

表 13. 外部低速时钟 (LSE) 特性

T_A=25℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位	
V_{DD}	工作电压范围	_	1.65	_	3.6	V	
$f_{\text{CK_LSE}}$	外部低速振荡器频率 (LSE)	$V_{DD} = 1.65 \text{ V} \sim 3.6 \text{ V}$	_	32.768	_	MHz	
R_{F}	内部反馈电阻	_	_	10	_	МΩ	
R_{ESR}	等效串联电阻	$V_{DD} = 3.3 \text{ V}$	30	_	TBD	ΚΩ	
C_L	负载电容	$V_{DD} = 3.3 \text{ V}$	6	_	TBD	pF	
	振荡器工作电流 (大电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 \text{ kHz}, \\ R_{ESR} &= 50 \text{ k}\Omega, \ \ C_L \geq 7 \text{ pF} \\ V_{DD} &= 1.65 \text{ V} \sim 2.7 \text{ V} \\ T_A &= -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C} \end{split}$	_	3.3	6.3	μΑ	
I_{DDLSE}	振荡器工作电流 (小电流模式)	$\begin{split} f_{CK_LSE} &= 32.768 \text{ kHz}, \\ R_{ESR} &= 50 \text{ k}\Omega, \;\; C_L \! < 7 \text{ pF} \\ V_{DD} &= 1.65 \text{ V} \sim 3.6 \text{ V} \\ T_A &= \text{-}40 \; ^{\circ}\text{C} \sim 85 \; ^{\circ}\text{C} \end{split}$	_	1.8	3.3		
	暂停电流	_	_	_	0.01		
$t_{ m SULSE}$	LSE 振荡器启动时间 (小电流模式)	$\begin{aligned} f_{CK_LSE} &= 32.768 \text{ kHz}, \\ V_{DD} &= 1.65 \text{ V} \sim 3.6 \text{ V} \end{aligned}$	500	_	_	ms	

- 注: PCB 布局时建议参考以下几点以提高 HSE / LSE 时钟晶体电路的稳定性:
 - 1. 晶体振荡器应当尽可能的靠近单片机来缩短走线长度,进而减少寄生电容。
 - 2. 晶体电路部分采用铺地做保护来减少噪音干扰的影响。
 - 3. 高频信号走线时远离晶体振荡器区域,可防止串扰。

内部时钟特性

表 14. 内部高速时钟 (HSI) 特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	1.65	_	3.6	V
f_{HSI}	HSI 频率	$V_{DD} = 3.3 \text{ V}$	_	8	_	MHz
	工厂调整 HSI 振荡器频率精度	$V_{DD} = 3.3 \text{ VT}_{A} = 25 ^{\circ}\text{C}$	-1	_	1	%
ACC_{HSI}		V_{DD} = 1.65 V ~ 3.6 V T_A = -20 °C ~ 60 °C	-2.5	_	2.5	%
		$V_{DD} = 1.65 \text{ V} \sim 3.6 \text{ V}$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	-3	_	3	%
Duty	HSI 振荡器占空比	$F_{CK_HSI} = 8 \text{ MHz}$	35	_	65	%
т	HSI 振荡器工作电流	£ _ 0 MII_	_	300	500	μA
I_{DDHSI}	暂停电流	$f_{HSI} = 8 \text{ MHz}$	_	_	0.05	μΑ
t_{SUHSI}	HSI 振荡器启动时间	$f_{HSI} = 8 \text{ MHz}$	_	_	10	μs

表 15. 内部低速时钟 (LSI) 特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD}	工作电压范围	_	1.65	_	3.6	V
F_{CK_LSI}	内部低速振荡器频率(LSI)	$V_{DD} = 3.3 \text{ V},$ $T_A = -40 \text{ °C} \sim 85 \text{ °C}$	21	32	43	kHz
ACC_{LSI}	LSI 振荡器频率精度	工厂调整后, V _{DD} = 3.3 V	-10	_	+10	%
I_{DDLSI}	LSI 振荡器工作电流	$V_{DD} = 3.3 \text{ V}$	_	0.4	0.8	μΑ
t_{SULSI}	LSI 振荡器启动时间	$V_{DD} = 3.3 \text{ V}$	_	_	100	μs

PLL 特性

表 16. PLL 特性

T_A=25℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
$f_{\scriptsize PLLIN}$	系统 PLL 输入时钟	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	系统 PLL 输出时钟	_	16	_	60	MHz
t_{LOCK}	系统 PLL 锁相时间	_	_	200	_	μs

USB PLL 特性

表 17. USB PLL 特性

T_A = 25 ℃, 除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
$f_{\scriptsize PLLIN}$	USB PLL 输入时钟	_	4	_	16	MHz
$f_{\text{CK_PLL}}$	USB PLL 输出时钟	_	64	_	96	MHz
t_{LOCK}	USB PLL 锁相时间	_	_	200	_	μs

存储器特性

表 18. Flash 存储器特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
N_{ENDU}	失败前可擦写次数 (寿命)	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	_	K cycles
t_{RET}	数据保存时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	_	Years
t_{PROG}	字编程时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	20	_	_	μs
t_{ERASE}	页擦除时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	2	_	_	ms
t_{MERASE}	整片擦除时间	$T_A = -40 ^{\circ}\text{C} \sim 85 ^{\circ}\text{C}$	10	_	_	ms

I/O 端口特性

表 19. I/O 端口特性

T_A=25 ℃, 除非另有规定

符号	参数		条件	最小值	典型值	最大值	单位
т.	优由亚龄) 由运	3.3 V I/O	$V_{I} = V_{SS}$,	_	_	3	μΑ
I_{IL}	低电平输入电流	复位引脚	片内上拉电阻除能	_	_	3	μΑ
т	高电平输入电流	3.3 V I/O	$V_{I} = V_{DD}$,	_	_	3	μΑ
I_{IH}	同电工制八电弧	复位引脚	片内下拉电阻除能	_	_	3	μΑ
V_{IL}	低电平输入电压	3.3 V I/O		-0.4	_	$0.35~V_{DD}$	V
V IL		复位引脚		-0.4	_	$0.35~\mathrm{V_{DD}}$	V
$ m V_{IH}$	高电平输入电压	3.3 V I/O		$0.65~\mathrm{V_{DD}}$	_	$V_{DD} + 0.4$	V
V IH	同电工制八电压	复位引脚		$0.65~\mathrm{V_{DD}}$	_	$V_{DD} + 0.4$	V
V	施密特触发器	3.3 V I/O		_	$0.12~\mathrm{V}_\mathrm{DD}$		
V_{HYS}	输入电压迟滞	复位引脚		_	$0.12~V_{DD}$	_	mV
		3.3 V I/O 4 m	A 驱动,V _{OL} = 0.4 V	4	_	_	mA
ī	低电平输出电流	3.3 V I/O 8 m	A 驱动,V _{OL} = 0.4 V	8	_	_	mA
I_{OL}	(GPIO 灌电流)	3.3V I/O 12 n	nA 驱动, V _{OL} = 0.4 V	12	_	_	mA
		3.3 V I/O 16 1	mA 驱动,V _{OL} = 0.4 V	16	16 — —		mA
		3.3 V I/O 4 m $V_{OH} = V_{DD} - 0$		4	_	_	mA
	高电平输出电流	3.3 V I/O 8 mA 驱动, V _{OH} = V _{DD} - 0.4 V		8	_	_	mA
Іон	(GPIO 源电流)	3.3 V I/O 12 I $V_{OH} = V_{DD} - 0$	** ***	12	_	_	mA
		3.3 V I/O 16 M $V_{OH} = V_{DD} - 0 \text{ M}$		16	_	_	mA
		3.3 V 4 mA 引	区式 I/O, I _{OL} = 4 mA	_	_	0.4	V
3 .7	化中亚松山中 区	3.3 V 8 mA 引	区式 I/O, I _{OL} = 8 mA	_	_	0.4	V
V_{OL}	低电平输出电压	3.3 V 12 mA	驱动 I/O,I _{OL} = 12 mA	_	_	0.4	V
		3.3 V 16 mA	驱动 I/O,I _{OL} = 16 mA	_	_	0.4	V
		3.3 V 4 mA 引	区式 I/O, I _{OH} = 4 mA	V _{DD} - 0.4	_	_	V
17	育山巫給山山 田	3.3 V 8 mA 引	区式 I/O, I _{OH} = 8 mA	V _{DD} - 0.4	_	_	V
V_{OH}	高电平输出电压	3.3 V 12 mA	驱动 I/O,I _{OH} = 12 mA	V _{DD} - 0.4	_	_	V
		3.3 V 16 mA	驱动 I/O,I _{OH} = 16 mA	V _{DD} - 0.4	_	_	V
R_{PU}	内部上拉电阻	3.3 V I/O,V	$t_{\rm DD} = 3.3 \text{ V}$	_	60	_	kΩ
R_{PD}	内部下拉电阻	3.3 V I/O,V	$T_{\rm DD} = 3.3 \text{ V}$	_	60	_	kΩ

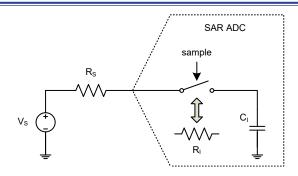

12-Bit A/D 转换器特性

表 20. A/D 转换器特性

T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
V_{DDA}	A/D 转换器工作电压	_	2.5	3.3	3.6	V
V_{ADCIN}	A/D 转换器输入电压范围	_	0	_	V_{REF^+}	V
V_{REF^+}	A/D 转换器参考电压	_	_	V_{DDA}	V_{DDA}	V
I_{ADC}	A/D 转换器工作电流	$V_{DDA} = 3.3 \text{ V}$	_	1	TBD	mA
I_{ADC_DN}	A/D 转换器暂停电流	$V_{DDA} = 3.3 \text{ V}$		_	0.1	μΑ
f_{ADC}	A/D 转换器时钟	_	0.7	_	16	MHz
f_{S}	采样率	_	0.05	_	1	MHz
t_{DL}	数据延迟	_	_	12.5		1/f _{ADC} Cycles
$t_{\rm S\&H}$	采样 & 保持时间	_	_	3.5	_	1/f _{ADC} Cycles
$t_{ADCCONV}$	A/D 转换器转换时间	_	_	16		1/f _{ADC} Cycles
$R_{\rm I}$	输入采样转换电阻	_	_	_	1	kΩ
C_{I}	输入采样电容	不包括引脚/焊盘电容	_	4	_	pF
$t_{ m SU}$	启动时间	_	_	_	1	μs
N	A/D 转换器分辨率	_	_	12		bits
INL	积分非线性误差	$f_S = 750 \text{ kHz}, V_{DDA} = 3.3 \text{ V}$	_	±2	±5	LSB
DNL	微分非线性误差	$f_S = 750 \text{ kHz}, V_{DDA} = 3.3 \text{ V}$	_	±1	_	LSB
Eo	失调误差	_	_	_	±10	LSB
E_{G}	增益误差	_	_	_	±10	LSB

- 注: 1. 表格中数据设计时可保证,未在生产中测试。
 - 2. 下图显示了 A/D 转换器采样和保持输入级的等效电路,图中 C_I 为内部存储电容, R_I 为内部 采样转换的电阻, R_S 是信号源 V_S 的输出阻抗。在正常情况下,采样阶段的持续时间大约是 3.5/ f_{ADC} 。在此阶段,对 C_I 充电以确保在其两端的电压变得足够接近 V_S 。为了保证这一点, R_S 取值会有一定的限制。

图 6. A/D 转换器采样网络模板

最差的情况是, 当在输入电压范围的极限 (0 V 和 V_{REF}) 进行连续采样, 可采用下面公式来确保采样误差低于 1/4 LSB:

$$R_{\rm S} < \frac{3.5}{f_{\rm ADC}C_{\rm I}ln(2^{N+2})} - R_{\rm I}$$

在此公式中, f_{ADC} 是 A/D 转换器时钟频率,N 是 A/D 转换器分辨率 (此时 N = 12)。安全程度由 引脚 / 焊盘寄生电容决定,在这个简单的例子中未作说明。

如果系统使用 A/D 转换器,在连续采样阶段没有轨到轨的输入电压变化, R_s 可能大于上述公式表示值。

24-Bit ADC 电气特性

表 21. 24-bit A/D 转换器电气特性

DV_{DD} = AV_{DD}, T_A = 25 °C, 除非另有说明

参数	条件	最小	典型	最大	单位					
VCM、ADC 和 PGA 电源电压	_	2.4	_	3.6	V					
VCM 引脚输出电压	AV _{DD} =3.3V,无负载	-5%	1.25	+5%	V					
VCM 温度系数	Ta=-40°C~85°C, AV _{DD} =3.3V, I _{LOAD} =10μA	_	_	0.24	mV/°C					
VCM 线性调整率	2.4V ≤ AV _{DD} ≤ 3.3V,无负载	_	_	0.4	%/V					
VCM 开启稳定时间	AV _{DD} =3.3V,无负载	_	_	10	ms					
VCM 引脚源电流	$AV_{DD}=3.3V$, $\Delta V_{OUT_VCM}=-2\%$	3	_	_	mA					
VCM 引脚灌电流	$AV_{DD}=3.3V$, $\Delta V_{OUT_VCM}=+2\%$	3	_	_	mA					
ADC & ADC 内部参考电压 (Delta Sigma ADC)										
ADC 使能的额外电流	VCM 使能, VRBUFP=1, VRBUFN=1	_	_	1120	μА					
	VCM 使能, VRBUFP=0, VRBUFN=0	_	820	970	μΑ					
	VCM 除能, VRBUFP=0, VRBUFN=0	_	500	650	μΑ					
待机电流	ADC 关闭,无负载	_	_	1	μΑ					
分辨率	_	_	_	24	bit					
非线性积分误差	AV _{DD} =3.3V, V _{REF} =1.25V, ΔSI=±450mV, PGA Gain=1	_	±50	_	ppm					
	V _{REF} =1.65V, Gain=32, 数据传输率 = 10Hz	_	17.5	_	Bit					
无噪音位	V _{REF} =1.65V, Gain=64, 数据传输率 = 10Hz	_	16.8	_	Bit					
	V _{REF} =1.65V,Gain=128, 数据传输率 = 10Hz	_	16.0	_	Bit					
	VCM、ADC和PGA电源电压 VCM引脚输出电压 VCM温度系数 VCM线性调整率 VCM开启稳定时间 VCM引脚源电流 VCM引脚灌电流 OC内部参考电压(Delta S	VCM、ADC 和 PGA 电源电压 VCM 引脚输出电压 AV _{DD} =3.3V, 无负载 VCM 温度系数 Ta=-40°C~85°C, AV _{DD} =3.3V, ILOAD=10µA VCM 线性调整率 2.4V ≤ AV _{DD} ≤ 3.3V, 无负载 VCM 开启稳定时间 AV _{DD} =3.3V, 无负载 VCM 引脚源电流 AV _{DD} =3.3V, ΔV _{OUT_VCM} =-2% VCM 引脚灌电流 AV _{DD} =3.3V, ΔV _{OUT_VCM} =+2% PC 内部参考电压 (Delta Sigma ADC) VCM 使能, VRBUFP=1, VRBUFN=1 VCM 使能, VRBUFP=0, VRBUFN=0 VCM 使能, VRBUFP=0, VRBUFN=0 VCM 除能, VRBUFN=0 ADC 关闭, 无负载 分辨率 — 非线性积分误差 AV _{DD} =3.3V, V _{REF} =1.25V, ASI=±450mV, PGA Gain=1 V _{REF} =1.65V, Gain=32, 数据传输率 = 10Hz V _{REF} =1.65V, Gain=64, 数据传输率 = 10Hz V _{REF} =1.65V, Gain=128,	VCM、ADC 和 PGA - 2.4 VCM 引脚输出电压 AV _{DD} =3.3V, 无负载 -5% VCM 温度系数 Ta=-40°C~85°C, AV _{DD} =3.3V, Load - VCM 线性调整率 2.4V ≤ AV _{DD} ≤ 3.3V, 无负载 - VCM 引脚源电流 AV _{DD} =3.3V, 无负载 - VCM 引脚源电流 AV _{DD} =3.3V, ΔV _{OUT_VCM} =-2% 3 VCM 引脚源电流 AV _{DD} =3.3V, ΔV _{OUT_VCM} =+2% 3 OC 内部参考电压 (Delta Sigma ADC) VCM 使能、VRBUFP=1, VRBUFN=1 - VCM 使能、VRBUFP=0, VRBUFN=0 - - VCM 除能、VRBUFP=0, VRBUFN=0 - - VCM 除能、VRBUFP=0, VRBUFN=0 - - 特机电流 ADC 关闭,无负载 - 分辨率 - - 非线性积分误差 AV _{DD} =3.3V, V _{REF} =1.25V, ASI=±450mV, PGA Gain=1 - V _{REF} =1.65V, Gain=32, 数据传输率 = 10Hz - V _{REF} =1.65V, Gain=64, 数据传输率 = 10Hz - V _{REF} =1.65V, Gain=128, -	VCM、ADC和PGA 电源电压 - 2.4 - VCM 引脚输出电压 AV _{DD} =3.3V, 无负载 -5% 1.25 VCM 温度系数 Ta=-40°C~85°C, AV _{DD} =3.3V,	VCM、ADC 和 PGA 电源电压 - 2.4 - 3.6 VCM 引脚输出电压 AV _{DD} =3.3V, 无负载 -5% 1.25 +5% VCM 温度系数 Ta=-40°C~85°C, AV _{DD} =3.3V, L _D 和 - 0.24 VCM 线性调整率 2.4V ≤ AV _{DD} ≤ 3.3V, 无负载 - - 0.4 VCM 线性调整率 2.4V ≤ AV _{DD} ≤ 3.3V, 无负载 - - 10 VCM 引脚源电流 AV _{DD} =3.3V, ΔV _{OUT,VCM} =-2% 3 - - VCM 引脚灌电流 AV _{DD} =3.3V, ΔV _{OUT,VCM} =+2% 3 - - VCM 内部参考电压 (Delta Sigma ADC) DC - - 1120 VCM 使能,VRBUFP=1,VRBUFN=1 - - - 1120 VCM 使能,VRBUFP=0,VRBUFN=0 - 820 970 VCM 除能,VRBUFP=0,VRBUFN=0 - 500 650 特机电流 ADC 关闭,无负载 - - 1 持机电流 ADC 关闭,无负载 - - 24 非线性积分误差 AV _{DD} =3.3V, V _{REF} =1.25V, A _D =					

符号	参数	条件	最小	典型	最大	单位
		V _{REF} =1.65V, Gain=32, 数据传输率 = 10Hz	_	20.2		Bit
ENOB	有效位数	V _{REF} =1.65V, Gain=64, 数据传输率 = 10Hz	_	19.5	_	Bit
		V _{REF} =1.65V, Gain=128, 数据传输率 = 10Hz	_	18.7	—	Bit
f_{ADCK}	ADC 时钟频率	_	40	409.6	440	kHz
£.	ADC 输出数据传输率	f _{MCLK} =4.9152MHz, FLMS[2:0]=000B	5	_	640	Hz
$f_{ m ADO}$	ADC 拥山剱焔役棚竿	f _{MCLK} =4.9152MHz, FLMS[2:0]=010B	12.5	_	1600	Hz
V_{REFP}		VREFS=1, VRBUFP=0,	V _{REFN} +1	_	AV_{DD}	V
V_{REFN}	参考输入电压	VRBUFN=0	0	_	V _{REFP} -1	V
V_{REF}		$V_{REF} = (V_{REFP} - V_{REFN}) \times VGS$	1	_	$AV_{DD}/2$	V
PGA						
$V_{\text{CM_PGA}}$	共模电压范围	_	0.4	_	AV _{DD} -0.95	V
ΔD_{I}	差分输入电压范围	Gain=PGS×AGS, ΔD _I =DI+ – DI-	-V _{REF} /Gain	_	+V _{REF} /Gain	V
温度传感器	P)					
TC_{TS}	温度传感器的温度系数	Ta=-40°C~85°C, V _{REF} =1.25V, VGS[1:0]=00B (Gain=1), VRBUFP=0, VRBUFN=0	_	175	_	μV/°C

有效位数 (ENOB)

 $V_{REF} = 1.65 \text{ V}, f_{ADCK} = 163 \text{ kHz}$

数据传输率	Gain									
(SPS)	1	2	4	8	16	32	64	128		
5	21.5	21.2	21.2	21.1	20.9	20.5	20.0	19.2		
10	21.3	21.0	20.9	20.7	20.5	20.2	19.5	18.7		
20	20.9	20.6	20.5	20.4	20.2	19.8	19.1	18.3		
40	20.4	20.1	20.1	20.0	19.8	19.4	18.8	18.0		
80	19.8	19.5	19.5	19.4	19.2	18.8	18.2	17.5		
160	19.3	19.0	19.0	18.9	18.7	18.4	17.8	17.0		
320	18.8	18.5	18.5	18.4	18.3	17.9	17.3	16.5		
640	18.3	18.1	18.1	18.0	17.8	17.5	16.8	16.0		

 V_{REF} = 1.65 V, f_{ADCK} = 409 kHz

数据传输率	Gain								
(SPS)	1	2	4	8	16	32	64	128	
12.5	21.8	21.4	21.2	21.1	20.7	20.3	19.5	18.6	
25	21.4	21.1	20.9	20.7	20.3	19.7	19.0	18.2	
50	20.9	20.6	20.5	20.3	19.9	19.4	18.6	17.7	
100	20.4	20.2	20.0	19.8	19.4	18.9	18.1	17.3	
200	19.8	19.4	19.3	19.2	18.9	18.4	17.7	16.8	
400	19.0	18.8	18.7	18.6	18.4	17.8	17.2	16.3	
800	18.7	18.4	18.3	18.2	17.9	17.4	16.7	15.8	
1600	18.2	18.0	17.9	17.7	17.3	16.7	16.2	15.4	

 $V_{\text{REF}} = 1.2 \text{ V}, \, f_{\text{ADCK}} = 163 \text{ kHz}$

数据传输率	Gain									
(SPS)	1	2	4	8	16	32	64	128		
5	20.6	20.4	20.4	20.3	20.3	20.1	19.6	18.9		
10	20.5	20.3	20.3	20.2	20.0	19.9	19.2	18.4		
20	20.3	19.9	19.9	19.8	19.7	19.4	18.8	18.0		
40	19.8	19.5	19.5	19.4	19.2	18.9	18.3	17.5		
80	19.3	19.1	19.1	19.0	18.8	18.5	17.8	17.0		
160	19.0	18.8	18.7	18.6	18.3	18.0	17.4	16.5		
320	18.5	18.2	18.2	18.1	17.8	17.5	16.9	16.1		
640	17.9	17.7	17.7	17.6	17.3	17.0	16.4	15.6		

 $V_{\text{REF}} = 1.2 \text{ V}, \, f_{\text{ADCK}} = 409 \text{ kHz}$

						, VEL	·, -ADCI	
数据传输率				Ga	ain			
(SPS)	1	2	4	8	16	32	64	128
12.5	20.9	20.7	20.5	20.3	20.1	19.8	19.1	18.2
25	20.7	20.4	20.2	20.1	19.8	19.4	18.6	17.8
50	20.3	20.1	19.8	19.7	19.4	18.8	18.1	17.4
100	19.9	19.6	19.4	19.2	18.9	18.4	17.7	16.8
200	19.5	19.2	19.0	18.8	18.5	17.9	17.2	16.4
400	18.9	18.7	18.6	18.4	18.0	17.5	16.7	15.9
800	18.5	18.2	18.0	17.8	17.5	16.9	16.2	15.4
1600	17.9	17.6	17.5	17.3	16.9	16.4	15.7	14.9

内部参考电压特性

表 22. 内部参考电压特性

T_A=25 ℃,除非另有规定

符号	参数		条件	最小值	典型值	最大值	单位
V_{DDA}	工作电压		_	1.65	_	3.6	V
		$V_{DDA} \ge 1.65 \text{ V}$	VREFSEL [1:0] = 00	1.190	1.215	1.240	
3.7	工厂调整后内部参考	$V_{DDA}\!\ge\!2.30~V$	VREFSEL [1:0] = 01	1.96	2.00	2.04	V
V_{REF}	电压 @ 25 ℃	$V_{DDA} \ge 2.80 \text{ V}$	VREFSEL [1:0] = 10	2.45	2.50	2.55	V
		$V_{DDA} \ge 3.00 \text{ V}$	VREFSEL [1:0] = 11	2.65	2.70	2.75	
V _{REFACC}	调整后的参考电压精 度	$V_{DDA} = 1.65 \text{ V} \sim V_{REF} = 1.215 \text{ V},$	$T_A = -40 \text{ °C} \sim 85 \text{ °C}$	-3.0	_	+3.0	%
t_{STABLE}	稳定时间		_	_	_	100	ms
$t_{\rm SREFV}$	读取参考电压时的 A/D 转换器采样时间		_	10	_	_	μs
I_{DD}	工作电流		_	_	45	55	μΑ
I_{DDPWD}	暂停电流		_	_	_	0.01	μΑ

V_{DDA} 监控特性

表 23. V_{DDA} 监控特性

T_A = 25 ℃, 除非另有规定

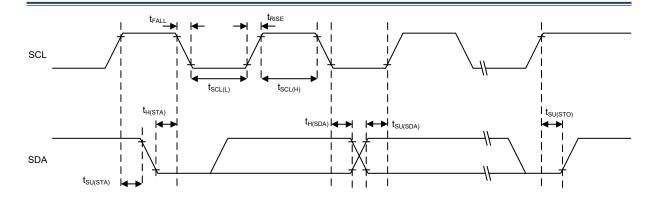
符号	参数	条件	最小值	典型值	最大值	单位
R	V _{DDA} 电阻桥	_		50	_	$k\Omega$
Q	V _{DDA} 测量比率	_	_	2	_	_
E_R	错误比	_	-1	_	+1	%
t_{SVDDA}	读取 VDDA 时的 A/D 转换器采样时间	_	5	_	_	μs

注:表格中数据设计时可保证,未在生产中测试。

GPTM / PWM 特性

表 24. GPTM / PWM 特性

符号	参数	条件	最小值	典型值	最大值	单位
f_{TM}	GPTM 和 PWM 定时器时钟源	_	_	_	f_{PCLK}	MHz
t_{RES}	定时器分辨率时间	_	1	_	_	$1/f_{TM}$
f_{EXT}	通道1~4的外部信号频率	_	_	_	1/2	f_{TM}
RES	定时器分辨率	_	—	_	16	bits



I²C 特性

表 25. I2C 特性

符号	参数	标准	模式	快速模式		高速	模式	单位
1寸 写	一	最小值	最大值	最小值	最大值	最小值	最大值	丰四
f_{SCL}	SCL 时钟频率	_	100	_	400	_	1000	kHz
t _{SCL(H)}	SCL 时钟高电平时间	4.5	_	1.125	_	0.45	_	μs
t _{SCL(L)}	SCL 时钟低电平时间	4.5	_	1.125	_	0.45	_	μs
t_{FALL}	SCL 和 SDA 下降沿时间	_	1.3	_	0.34	_	0.135	μs
t_{RISE}	SCL 和 SDA 上升沿时间	_	1.3	_	0.34	_	0.135	μs
t _{SU(SDA)}	SDA 数据建立时间	500	_	125	_	50	_	ns
$t_{H(SDA)}$	SDA 数据保持时间	0	_	0	_	0	_	ns
t _{SU(STA)}	START 条件建立时间	500	_	125	_	50	_	ns
t _{H(STA)}	START 条件保持时间	0	_	0	_	0	_	ns
$t_{SU(STO)}$	STOP 条件建立时间	500	_	125	—	50	_	ns

- 注: 1. 表格中数据设计时可保证, 未在生产中测试。
 - 2. 为达到标准模式 100 kHz, 外设时钟频率必须高于 2 MHz。
 - 3. 为达到快速模式 400 kHz, 外设时钟频率必须高于 8 MHz。
 - 4. 为达到高速模式 1 MHz, 外设时钟频率必须高于 20 MHz。
 - 5. 以上 I²C 总线时序图的特性参数是基于: SEQFILTER = 01 且 COMBFILTEREn 除能的情况。

图 7. I²C 时序图

SPI 特性

表 26. SPI 特性

符号	参数	条件	最小值	典型值	最大值	单位
SPI 主机	模式					
f_{SCK}	SPI 主机输出 SCK 时钟频率	SPI 外设时钟频率 f _{PCLK}	_	_	f _{PCLK} /2	MHz
$t_{SCK(H)} \\ t_{SCK(L)}$	SCK 时钟高电平和低电平时间	_	t _{SCK} /2 -2		t _{SCK} /2 +1	ns
$t_{\mathrm{V}(\mathrm{MO})}$	数据输出有效时间	_	_	_	5	ns
$t_{H\left(\mathrm{MO}\right)}$	数据输出保持时间	_	2	_	_	ns
$t_{\rm SU(MI)} \\$	数据输入建立时间	_	5	_	_	ns
$t_{H\left(MI\right) }$	数据输入保持时间	_	5	_	_	ns
SPI 从机	模式					
$f_{\text{SCK}} \\$	SPI 从机输入 SCK 时钟频率	SPI 外设时钟频率 f _{PCLK}	_		$f_{\text{PCLK}}/3$	MHz
Duty _{SCK}	SPI 从机输入 SCK 时钟占空比周期	_	30		70	%
$t_{SU(SEL)}$	SEL 使能建立时间	_	3 t _{PCLK}	_	_	ns
$t_{H\left(SEL\right) }$	SEL 使能保持时间	_	2 t _{PCLK}	_	_	ns
$t_{A(\mathrm{SO})}$	数据输出访问时间	_	_	_	3 t _{PCLK}	ns
$t_{\rm DIS(SO)}$	数据输出禁止时间	_	_	_	10	ns
$t_{\mathrm{V(SO)}}$	数据输出有效时间	_	_	_	25	ns
$t_{H(\mathrm{SO})}$	数据输出保持时间	_	15	_	_	ns
$t_{\rm SU(SI)}$	数据输入建立时间	_	5		_	ns
$t_{H(SI)}$	数据输入保持时间	_	4	_	_	ns

注: 1. f_{SCK} 为 SPI 输出 / 输入时钟频率, $t_{SCK} = 1/f_{SCK}$ 。

^{2.} f_{PCLK} 为 SPI 外设时钟频率, $t_{PCLK} = 1/f_{PCLK}$ 。

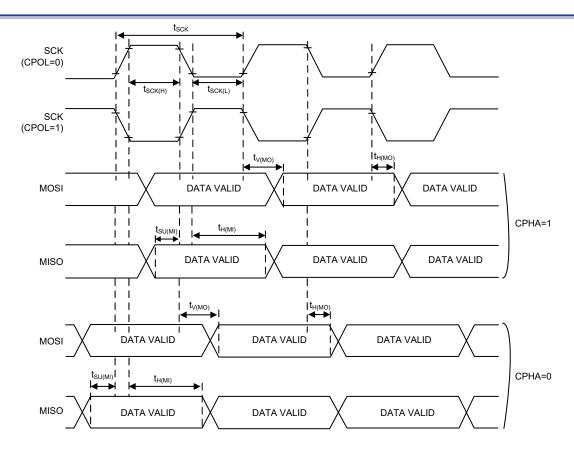


图 8. SPI 时序图 - SPI 主机模式

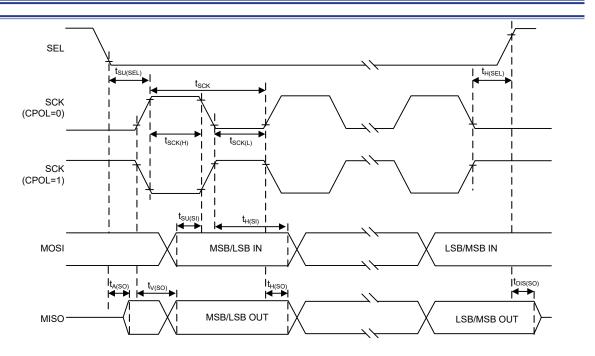


图 9. SPI 时序图 - SPI 从机模式, CPHA = 1

LCD 特性

表 27. LCD 特性

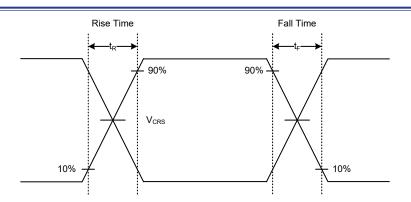
T_A=25 ℃,除非另有规定

符号	参数	条件	最小值	典型值	最大值	单位
	LCD 外部电压	_	_	_	3.6	V
		_	_	2.65	_	V
		クト部电压 ー ー ー ー ー 2.65 ー ー 2.65 ー ー 2.75 ー ー 2.85 ー ー 2.95 ー ー ー 2.95 ー ー ー 3.1 ー ー 3.25 ー ー ー 3.25 ー ー ー 3.4 ー ー ー ー 3.4 ー	_	V		
		_	_	2.85	_	V
V_{LCD}	LOD由如大山石山区	_	_	2.95	_	V
	LCD 內部兀电氷电压	_	_	3.1	_	V
		_	_	3.25	_	V
		_	_	3.4	_	V
		_	_	3.55	3.6	V
C_{LCD}	V _{LCD} 外部电容	_	0.22	_	2.2	μF
т	电源电流 @ V _{DD} = 3.3 V	外部 V _{LCD} ⁽¹⁾	—	2.4	_	4
I_{LCD}	电源电流 @ V _{DD} = 2.7 V	内部充电泵 (2)		50	_	μA
$R_{\rm H}$	内部低驱动电阻网络总阻值	_		3	_	ΜΩ
R_{L}	内部高驱动电阻网络总阻值	_		120	_	kΩ
V ₄₄	SEG/COM 最高电平电压	_	_	_	V_{LCD}	V
V_{34}	SEG/COM 3/4 电平电压	_	—	$3/4~V_{\rm LCD}$	_	V
V_{23}	SEG/COM 2/3 电平电压	_	_	$2/3~V_{\rm LCD}$	_	V
V_{12}	SEG/COM 1/2 电平电压	_	_	$1/2 V_{\rm LCD}$	_	V
V_{13}	SEG/COM 1/3 电平电压	_		$1/3 V_{\rm LCD}$	_	V
V_{14}	SEG/COM 1/4 电平电压	_		$1/4~V_{\rm LCD}$	_	V
V_0	SEG/COM 最低电平电压	_	0	_	_	V

注: 1. LCD 使能,外部 $V_{LCD} = V_{DD} = 3.3 \text{ V}$,1/4 占空比,1/3 偏压,分频比 = 64,高驱动功能除能,所有像素点激活,无 LCD 连接。

^{2.} LCD 使能,内部充电泵 V_{LCD} = 3.25 V, V_{DD} = 2.7 V,1/4 占空比,1/3 偏压,分频比 = 64,高驱动功能除能,所有像素点激活,无 LCD 连接。

^{3.} 表格中数据设计时可保证, 未在生产中测试。


USB 特性

USB接口符合 USB-IF 认证 – 全速。

表 28. USB 直流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ m DD}$	USB 工作电压	_	3.0	_	3.6	V
V_{DI}	微分输入灵敏度	USBDP - USBDM	0.2	_	_	V
V_{CM}	共模电压范围	_	0.8	_	2.5	V
$V_{\scriptscriptstyle SE}$	单端接收器阈值	_	0.8	_	2.0	V
V _{OL}	Pad 输出低电压		0	_	0.3	V
V_{OH}	Pad 输出高低压	1.5 kΩ R _L 连接到 V _{DD33}	2.8	_	3.6	V
V _{CRS}	微分输出信号交叉点电压		1.3	_	2.0	V
Z _{DRV}	驱动器输出电阻值	_	_	10	_	Ω
CIN	收发器 Pad 电容值	_	_	_	20	pF

- 注: 1. 表格中数据设计时可保证, 未在生产中测试。
 - 2. 当电压降低至 2.7 V 时,都可确保 USB 功能的正常使用,但当 V_{DD} 电压范围在 2.7 V ~ 3.0 V 时,部分 USB 电气特性值会有所下降。
 - 3. RL 是连接到 USB 驱动器 USBDP 的负载电阻。

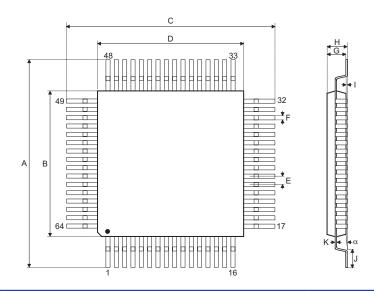
图 10. USB 信号上升时间、下降时间和交叉点电压 (V_{CRS}) 定义

表 29. USB 交流电气特性

符号	参数	条件	最小值	典型值	最大值	单位
t_R	上升时间	$C_L = 50 \text{ pF}$	4	_	20	ns
$t_{\rm F}$	下降时间	$C_L = 50 \text{ pF}$	4	_	20	ns
t _{R/F}	上升时间 / 下降时间匹配度	$t_{R/F} = t_R / t_F$	90	_	110	%

才封装信息

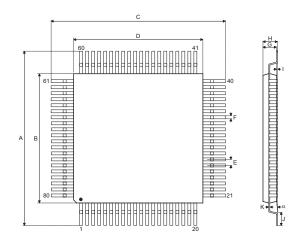
请注意,这里提供的封装信息仅作为参考。由于这个信息经常更新,提醒用户咨询 <u>Holtek 网站</u>以 获取最新版本的封装信息。


封装信息的相关内容如下所示,点击可链接至 Holtek 网站相关信息页面。

- 封装信息(包括外形尺寸、包装带和卷轴规格)
- 封装材料信息
- 纸箱信息

Rev. 1.10 61 of 64 2022-04-12

64-pin LQFP (7mm × 7mm) 外形尺寸



符号	尺寸 (单位: inch)			
1 7 5	最小值	典型值	最大值	
A	_	0.354 BSC	_	
В	_	0.276 BSC	_	
С	_	0.354 BSC	_	
D	_	0.276 BSC	_	
Е	_	0.016 BSC	_	
F	0.005	0.007	0.009	
G	0.053	0.055	0.057	
Н	_	_	0.063	
I	0.002		0.006	
J	0.018	0.024	0.030	
K	0.004		0.008	
α	0°	_	7°	

 符号	尺寸(单位: mm)			
17.5	最小值	典型值	最大值	
A	_	9.00 BSC	_	
В	_	7.00 BSC	_	
С	_	9.00 BSC	_	
D	_	7.00 BSC	_	
Е	_	0.40 BSC	_	
F	0.13	0.18	0.23	
G	1.35	1.40	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

80-pin LQFP (10mm × 10mm) 外形尺寸

符号	尺寸(单位: inch)			
19 ⁻⁵	最小值	典型值	最大值	
A	_	0.472 BSC	_	
В	_	0.394 BSC	_	
С	_	0.472 BSC	_	
D	_	0.394 BSC	_	
Е	_	0.016 BSC	_	
F	0.005	0.007	0.009	
G	0.053	0.055	0.057	
Н	_	_	0.063	
I	0.002	_	0.006	
J	0.018	0.024	0.030	
K	0.004	_	0.008	
α	0°	_	7°	

—————————— 符号	尺寸(单位: mm)			
1寸 写	最小值	典型值	最大值	
A	_	12.00 BSC	_	
В	_	10.00 BSC	_	
С	_	12.00 BSC	_	
D	_	10.00 BSC	_	
Е	_	0.40 BSC	_	
F	0.13	0.18	0.23	
G	1.35	1.40	1.45	
Н	_	_	1.60	
I	0.05	_	0.15	
J	0.45	0.60	0.75	
K	0.09	_	0.20	
α	0°	_	7°	

Copyright® 2022 by HOLTEK SEMICONDUCTOR INC.

使用指南中所出现的信息在出版当时已尽量做到合理注意,但合泰不保证信息准确无误,文中提到的应用目的仅仅是用来做为参考,合泰不保证这些说明将是适当的,也不推荐将合泰的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。合泰特此声明,不授权将产品使用于救生、维生从机或系统中做为关键从机。合泰对于客户或第三方因说明书所载信息错误或遗漏、使用产品或说明书而遭受的一切损失,一概不负任何责任。合泰拥有不事先通知而修改使用指南中所记载的产品或规格的权利,如欲取得最新的信息,请与我们联系。